Buchmann Institut für Molekulare Lebenswissenschaften (BMLS)
Refine
Year of publication
Document Type
- Article (77)
- Preprint (48)
- Book (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (127)
Is part of the Bibliography
- no (127)
Keywords
- Cryoelectron microscopy (4)
- X-ray crystallography (4)
- PROTAC (3)
- Antimicrobial resistance (2)
- Autophagy (2)
- Biochemistry (2)
- C. elegans (2)
- Cell biology (2)
- additive manufacturing (2)
- autophagy (2)
Institute
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (127)
- Biochemie, Chemie und Pharmazie (38)
- Biowissenschaften (28)
- Medizin (27)
- MPI für Biophysik (14)
- Biochemie und Chemie (12)
- Physik (12)
- Exzellenzcluster Makromolekulare Komplexe (4)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Pharmazie (3)
Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson’s disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Correlating topographic imaging and Raman microscopy to investigate wound re-epithelialization
(2024)
Highlights
• Target engagement is quantified against 192 full-length kinases in intact cells
• The method uses a single BRET tracer, at 4 different operating concentrations
• This method is simple and can be executed using common lab equipment
• Engagement selectivity differs in live cells vs cell free systems
This protocol is used to profile the engagement of kinase inhibitors across nearly 200 kinases in a live-cell context. This protocol utilizes one single kinase tracer (NanoBRET(TM) Tracer K10) that operates quantitatively at four different concentrations. Minimizing the number of tracers offers a significant workflow improvement over the previous protocol that utilized a combination of 6 tracers. Each NanoBRET(TM) kinase assay is built using commercially available plasmids and has been optimized for NanoLuc tagging orientation, diluent DNA, and tracer concentration.
Prolonged drug residence times may result in longer lasting drug efficacy, improved pharmacodynamic properties and “kinetic selectivity” over off-targets with fast drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Here, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5-iodotubercidin (5-iTU) derivatives as a model for an archetypal active state (type I) kinase-inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. This key interaction is dependent on the interactions with an aromatic residue in the gate keeper position and we observe this interaction in other kinases with an aromatic gate keeper residue. We provide a detailed mechanistic characterization of the halogen-aromatic π interactions in the haspin-inhibitor complexes by means of kinetic, thermodynamic, and structural measurements along with binding energy calculations. Since halogens are frequently used in drugs and aromatic residues are often present in the binding sites of proteins, our results provide a compelling rationale for introducing aromatic-halogen interactions to prolong drug-target residence times.
Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a considerable cause for Parkinson’s disease (PD). However, the high- resolution 3D structure of the protein is still lacking. This structure will not only help to understand PD etiology but will also enable rational drug design. We have established a reliable method to produce LRRK2 crystals for the first time. However, the limited resolution of the diffraction data prevented structure determination using crystallographic methods. Herein we describe our efforts to improve the crystal quality by crystallizing under microgravity conditions aboard the International Space Station (ISS). Our method features diffusive sample mixing in capillaries and controlled crystal formation by transporting the samples in a frozen state. The crystallisation was successfully repeated under microgravity conditions. However, comparison of earth-grown and microgravity-grown LRRK2 crystals did not reveal any differences in diffraction quality. Here we present the established protocol and our experience adapting crystallization condition to the requirements necessary for successful crystallization of large and sensitive biomolecules under microgravity.
FUBP-interacting repressor (FIR) is a suppressor of transcription of the proto-oncogene MYC. FIR binds to the far upstream element (FUSE) of the MYC promoter. Competition of FIR with FUSE-binding protein 1 (FUBP1) is a key mechanism of MYC transcriptional regulation. To gain insights into the structural mechanisms regulating FIR DNA interaction, we determined the crystal structure of two FIR RRM domains (RRM1-2) with single-stranded FUSE DNA sequences. These structures revealed an ability of the RRM domain to recognize diverse FUSE regions through distinct intermolecular interactions and binding modes. Comparative structural analyses against available RRM-ssDNA/RNA complexes showed that the nucleotide configurations in FIR were similar to those in other RRMs that harbour a tyrosine at the conserved aromatic position in the RNP2 motif (Y-type RRM), but not those with a phenylalanine (F-type RRM). Site-directed mutagenesis experiments demonstrated that a single substitution, Y115F, altered the binding affinities of oligonucleotides to FIR RRM, suggesting an important role of this conserved aromatic residue in ssDNA/RNA interactions. Our study provides the structural basis for further mechanistic studies on this important protein–DNA interaction.
Utilizing 2D-region-based CNNs for automatic dendritic spine detection in 3D live cell imaging
(2023)
Dendritic spines are considered a morphological proxy for excitatory synapses, rendering them a target of many different lines of research. Over recent years, it has become possible to simultaneously image large numbers of dendritic spines in 3D volumes of neural tissue. In contrast, currently no automated method for 3D spine detection exists that comes close to the detection performance reached by human experts. However, exploiting such datasets requires new tools for the fully automated detection and analysis of large numbers of spines. Here, we developed an efficient analysis pipeline to detect large numbers of dendritic spines in volumetric fluorescence imaging data acquired by two-photon imaging in vivo. The core of our pipeline is a deep convolutional neural network that was pretrained on a general-purpose image library and then optimized on the spine detection task. This transfer learning approach is data efficient while achieving a high detection precision. To train and validate the model we generated a labeled dataset using five human expert annotators to account for the variability in human spine detection. The pipeline enables fully automated dendritic spine detection reaching a performance slightly below that of the human experts. Our method for spine detection is fast, accurate and robust, and thus well suited for large-scale datasets with thousands of spines. The code is easily applicable to new datasets, achieving high detection performance, even without any retraining or adjustment of model parameters.
Highlights
• NPM1/NPM1c induce the autophagy-lysosome pathway by activating the master regulator TFEB
• NPM1/NPM1c bind to GABARAP proteins via an atypical module in their N-terminal regions
• The pro-autophagic activity of NPM1c depends on this GABARAP binding module
Summary
The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.
Lipid acquisition and transport are fundamental processes in all organisms, but many of the key players remain unidentified. In this study, we investigate the lipid-cycling mechanism of the minimal model organism Mycoplasma pneumoniae. We show that the essential protein P116 can extract lipids from the environment but also self- sufficiently deposit them into both eukaryotic cell membranes and liposomes. Our structures and molecular dynamics simulation reveal the mechanism by which the N- terminal region of P116, which resembles an SMP domain, perturbs the membrane, while a hydrophobic pocket exploits the chemical gradient to collect the lipids. Filling of P116 with cargo leads to a conformational change that modulates membrane affinity without consumption of ATP. We show that the Mycoplasmas have one integrated lipid acquisition and delivery machinery that shortcuts the complex multi-protein pathways used by higher developed organisms.