Buchmann Institut für Molekulare Lebenswissenschaften (BMLS)
Refine
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- C. elegans (2)
- Cell biology (2)
- PROTAC (2)
- Alternative splicing (1)
- Antimicrobial resistance (1)
- Bacterial biofilm (1)
- Biochemistry (1)
- Blinatumomab (1)
- CD19 (1)
- CPVT (1)
Institute
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (25)
- Biochemie, Chemie und Pharmazie (7)
- Biowissenschaften (7)
- Medizin (7)
- Exzellenzcluster Makromolekulare Komplexe (3)
- Physik (3)
- Biodiversität und Klima Forschungszentrum (BiK-F) (2)
- Biochemie und Chemie (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Senckenbergische Naturforschende Gesellschaft (1)
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disturbance of the heart rhythm (arrhythmia) that is induced by stress or that occurs during exercise. Most mutations that have been linked to CPVT are found in two genes, i.e., ryanodine receptor 2 (RyR2) and calsequestrin 2 (CASQ2), two proteins fundamentally involved in the regulation of intracellular Ca2+ in cardiac myocytes. We inserted six CPVT-causing mutations via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 into unc-68 and csq-1, the Caenorhabditis elegans homologs of RyR and CASQ, respectively. We characterized those mutations via video-microscopy, electrophysiology, and calcium imaging in our previously established optogenetic arrhythmia model. In this study, we additionally enabled high(er) throughput recordings of intact animals by combining optogenetic stimulation with a microfluidic chip system. Whereas only minor/no pump deficiency of the pharynx was observed at baseline, three mutations of UNC-68 (S2378L, P2460S, Q4623R; RyR2-S2246L, -P2328S, -Q4201R) reduced the ability of the organ to follow 4 Hz optogenetic stimulation. One mutation (Q4623R) was accompanied by a strong reduction of maximal pump rate. In addition, S2378L and Q4623R evoked an altered calcium handling during optogenetic stimulation. The 1,4-benzothiazepine S107, which is suggested to stabilize RyR2 channels by enhancing the binding of calstabin2, reversed the reduction of pumping ability in a mutation-specific fashion. However, this depends on the presence of FKB-2, a C. elegans calstabin2 homolog, indicating the involvement of calstabin2 in the disease-causing mechanisms of the respective mutations. In conclusion, we showed for three CPVT-like mutations in C. elegans RyR a reduced pumping ability upon light stimulation, i.e., an arrhythmia-like phenotype, that can be reversed in two cases by the benzothiazepine S107 and that depends on stabilization via FKB-2. The genetically amenable nematode in combination with optogenetics and high(er) throughput recordings is a promising straightforward system for the investigation of RyR mutations and the selection of mutation-specific drugs.
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.
Resistance to CD19-directed immunotherapies in lymphoblastic leukemia has been attributed, among other factors, to several aberrant CD19 pre-mRNA splicing events, including recently reported excision of a cryptic intron embedded within CD19 exon 2. While “exitrons” are known to exist in hundreds of human transcripts, we discovered, using reporter assays and direct long-read RNA sequencing (dRNA-seq), that the CD19 exitron is an artifact of reverse transcription. Extending our analysis to publicly available datasets, we identified dozens of questionable exitrons, dubbed “falsitrons,” that appear only in cDNA-seq, but never in dRNA-seq. Our results highlight the importance of dRNA-seq for transcript isoform validation.
Natural products can contribute to abiotic stress tolerance in plants and fungi. We hypothesize that biosynthetic gene clusters (BGCs), the genomic elements that underlie natural product biosynthesis, display structured differences along elevation gradients. We analysed biosynthetic gene variation in natural populations of the lichen-forming fungus Umbilicaria pustulata. We collected a total of 600 individuals from the Mediterranean and cold-temperate climates. Population genomic analyses indicate that U. pustulata contains three clusters that are highly differentiated between the Mediterranean and cold-temperate populations. One entire cluster is exclusively present in cold-temperate populations, and a second cluster is putatively dysfunctional in all cold-temperate populations. In the third cluster variation is fixed in all cold-temperate populations due to hitchhiking. In these two clusters the presence of consistent allele frequency differences among replicate populations/gradients suggests that selection rather than drift is driving the pattern. We advocate that the landscape of fungal biosynthetic genes is shaped by both positive and hitchhiking selection. We demonstrate, for the first time, the presence of climate-associated BGCs and BGC variations in lichen-forming fungi. While the associated secondary metabolites of the candidate clusters are presently unknown, our study paves the way for targeted discovery of natural products with ecological significance.
Animals sense ambient temperature so that they can adjust their behavior to the environment; they avoid noxious heat and coldness and stay within a survivable temperature range. C. elegans can sense temperature, memorize past cultivation temperature and navigate towards preferable temperature, for which a thermosensory neuron, AFD, is essential. AFD responds to temperature increase from the past cultivation temperature by increasing intracellular Ca2+ level. We aimed to reveal how AFD encodes and memorizes the information of temperature. Although cGMP synthesis is crucial for thermosensation by AFD, whether and how cGMP level temporally fluctuates in AFD remained elusive. We therefore monitored cGMP level in AFD and found that cGMP dynamically responded to temperature change in a manner dependent on past cultivation temperature. Given that cGMP dynamics is supposed to be upstream of Ca2+ dynamics, our results suggest that AFD’s memory is formed by simpler molecular mechanisms than previously expected from the Ca2+ dynamics. Moreover, we analyzed how guanylyl cyclases and phosphodiesterases, which synthesize and degrade cGMP, respectively, contributed to cGMP and Ca2+ dynamics and thermotaxis behavior.
During animal development, it is crucial that cells can sense and adapt to mechanical forces from their environment. Ultimately, these forces are transduced through the actomyosin cortex. How the cortex can simultaneously respond to and create forces during cytokinesis is not well understood. Here we show that under mechanical stress, cortical actomyosin flow switches its polarization during cytokinesis in the C. elegans embryo. In unstressed embryos, longitudinal cortical flows contribute to contractile ring formation, while rotational cortical flow is additionally induced in uniaxially loaded embryos. Rotational cortical flow is required for the redistribution of the actomyosin cortex in loaded embryos. Rupture of longitudinally aligned cortical fibers during cortex rotation releases tension, initiates orthogonal longitudinal flow and thereby contributes to furrowing in loaded embryos. A targeted screen for factors required for rotational flow revealed that actomyosin regulators involved in RhoA regulation, cortical polarity and chirality are all required for rotational flow and become essential for cytokinesis under mechanical stress. In sum, our findings extend the current framework of mechanical stress response during cell division and show scaling of orthogonal cortical flows to the amount of mechanical stress.
Formation of the anteroposterior and dorsoventral body axis in the Caenorhabditis elegans embryo depends on cortical actomyosin flows and advection of polarity determinants. The role of this patterning mechanism in tissue polarization immediately after formation of cell-cell contacts is not fully understood. Here, we demonstrate that planar cell polarity (PCP) is established in the C. elegans embryo at the time of left-right (l/r) symmetry breaking. At this stage, centripetal cortical flows asymmetrically and differentially advect anterior polarity determinants (aPARs) PAR-3, PAR-6 and PKC-3 from cell-cell contacts to the medial cortex, which results in their unmixing from apical myosin. Advection generally requires GSK-3 and CDC-42, while advection of PAR-6 specifically depends on the RhoGAP PAC-1. Concurrent asymmetric retention of PAR-3, E-cadherin/HMR-1, PAC-1 and opposing retention of the antagonistic Wnt pathway components APC/APR-1 and Frizzled/MOM-5 at apical cell-cell contacts leads to planar asymmetries. The most obvious mark of PCP, asymmetric retention of PAR-3 at posterior cell-cell contacts on the left side of the embryo, is required for proper cytokinetic cell intercalation. Hence, our data uncover how PCP can be established through Wnt signaling as well as dissociation and planar asymmetric retention of aPARs mediated by distinct Rho GTPases and their regulators.
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an important model organism in biology and agricultural research with high economic relevance. However, information about its embryonic development is still sparse. We share nine long-term live imaging datasets acquired with light sheet fluorescence microscopy (484.5 h total recording time, 373 995 images, 256 Gb) with the scientific community. Six datasets show the embryonic development in toto for about 60 hours at 30 minutes intervals along four directions in three spatial dimensions, covering approximately 97% of the entire embryonic development period. Three datasets focus on germ cell formation and head involution. All imaged embryos hatched morphologically intact. Based on these data, we suggest a two-level staging system that functions as a morphogenetic framework for upcoming studies on medfly. Our data supports research on wild-type or aberrant morphogenesis, quantitative analyses, comparative approaches to insect development as well as studies related to pest control. Further, they can be used to test advanced image processing approaches or to train machine learning algorithms and/or neuronal networks.
In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.