Buchmann Institut für Molekulare Lebenswissenschaften (BMLS)
Refine
Year of publication
Document Type
- Article (66)
- Preprint (41)
- Book (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (109)
Is part of the Bibliography
- no (109)
Keywords
- Cryoelectron microscopy (4)
- X-ray crystallography (4)
- PROTAC (3)
- Antimicrobial resistance (2)
- Biochemistry (2)
- C. elegans (2)
- Cell biology (2)
- additive manufacturing (2)
- machine learning (2)
- 3D cell culture (1)
Institute
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (109)
- Biochemie, Chemie und Pharmazie (31)
- Biowissenschaften (27)
- Medizin (23)
- MPI für Biophysik (13)
- Biochemie und Chemie (9)
- Physik (9)
- Exzellenzcluster Makromolekulare Komplexe (4)
- Biodiversität und Klima Forschungszentrum (BiK-F) (2)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.
Manipulation of neuronal or muscular activity by optogenetics or other stimuli can be directly linked to the analysis of Caenorhabditis elegans (C. elegans) body length. Thus, WormRuler was developed as an open-source video analysis toolbox that offers video processing and data analysis in one application. Utilizing this novel tool, the super red-shifted channelrhodopsin variant, ChrimsonSA, was characterized in C. elegans. Expression and activation of ChrimsonSA in GABAergic motor neurons results in their depolarization and therefore elongation of body length, the extent of which providing information about the strength of neuronal transmission.
Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.
Cyclin CLB2 mRNA localization and protein synthesis link cell cycle progression to bud growth
(2024)
Clb2 is a conserved mitotic B-type cyclin, the levels of which are finely controlled to drive progression through the cell cycle. While it is known that CLB2 transcription and Clb2 protein degradation are important for precise control of its expression, it remains unclear whether the synthesis of Clb2 is also regulated. To address whether and how Clb2 expression levels respond to cell growth changes and adapt cell cycle progression, we combined single-cell and single-molecule imaging methods to measure CLB2 mRNA and protein expression throughout the Saccharomyces cerevisiae cell cycle. We found that the CLB2 mRNA was efficiently localized to the yeast bud as soon as this compartment was formed, but strikingly the Clb2 protein accumulated in the mother nucleus. The CLB2 mRNA localization in the yeast bud by the She2-3 complex did not control protein localization but rather promoted CLB2 translation. Moreover, CLB2 mRNA bud localization and protein synthesis were coupled and dependent on a single secondary structure -a ZIP code-located in the coding sequence. In a CLB2 ZIP code mutant, mRNA localization was impaired and Clb2 protein synthesis decreased, resulting in changes in cell cycle distribution and increased size of daughter cells at birth. Finally, while in WT cells the Clb2 protein concentration followed bud growth, this relationship was impaired in the ZIP code mutant. We propose that S. cerevisiae couples the control of CLB2 mRNA bud localization and protein synthesis to coordinate cell growth and cell cycle progression. This mechanism extends our knowledge of CLB2 expression regulation, and constitutes a novel function for mRNA localization.
Oncogenic transformation of lung epithelial cells is a multi-step process, frequently starting with the inactivation of tumor suppressors and subsequent activating mutations in proto-oncogenes, such as members of the PI3K or MAPK family. Cells undergoing transformation have to adjust to changes, such as metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors, which manifest these adjustments. Here, we report that the deubiquitylase USP28 enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes, such as c-JUN, c-MYC, NOTCH and ΔNP63, at early stages of malignant transformation. USP28 is increased in cancer compared to normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors, such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small molecule inhibitor reset the proteome of transformed cells towards a ‘pre-malignant’ state, and its inhibition cooperated with clinically established compounds used to target EGFRL858R, BRAFV600E or PI3KH1047R driven tumor cells. Targeting USP28 protein abundance already at an early stage via inhibition of its activity therefore is a feasible strategy for the treatment of early stage lung tumours and the observed synergism with current standard of care inhibitors holds the potential for improved targeting of established tumors.
Mitochondria are dynamic organelles exhibiting diverse shapes. While the variation of shapes, ranging from spheres to elongated tubules, and the transition between them, are clearly seen in many cell types, the molecular mechanisms governing this morphological variability remain poorly understood. Here, we propose a novel shaping mechanism based on the interplay between the inner and outer mitochondrial membranes. Our biophysical model suggests that the difference in surface area, arising from the pulling of the inner membrane into cristae, correlates with mitochondrial elongation. Analysis of live cell super-resolution microscopy data supports this correlation, linking elongated shapes to the extent of cristae in the inner membrane. Knocking down cristae shaping proteins further confirms the impact on mitochondrial shape, demonstrating that defects in cristae formation correlate with mitochondrial sphericity. Our results suggest that the dynamics of the inner mitochondrial membrane are important not only for simply creating surface area required for respiratory capacity, but go beyond that to affect the whole organelle morphology. This work explores the biophysical foundations of individual mitochondrial shape, suggesting potential links between mitochondrial structure and function. This should be of profound significance, particularly in the context of disrupted cristae shaping proteins and their implications in mitochondrial diseases.
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
(2023)
Excitable cells can be stimulated or inhibited by optogenetics. Since optogenetic actuation regimes are often static, neurons and circuits can quickly adapt, allowing perturbation, but not true control. Hence, we established an optogenetic voltage-clamp (OVC). The voltage-indicator QuasAr2 provides information for fast, closed-loop optical feedback to the bidirectional optogenetic actuator BiPOLES. Voltage-dependent fluorescence is held within tight margins, thus clamping the cell to distinct potentials. We established the OVC in muscles and neurons of Caenorhabditis elegans, and transferred it to rat hippocampal neurons in slice culture. Fluorescence signals were calibrated to electrically measured potentials, and wavelengths to currents, enabling to determine optical I/V-relationships. The OVC reports on homeostatically altered cellular physiology in mutants and on Ca2+-channel properties, and can dynamically clamp spiking in C. elegans. Combining non-invasive imaging with control capabilities of electrophysiology, the OVC facilitates high-throughput, contact-less electrophysiology in individual cells and paves the way for true optogenetic control in behaving animals.
EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity
(2021)
Highlights
• Denervation induces mushroom spine loss and AMPAR redistribution to the surface
• GRIP1 and ephrinB2 mediate homeostatic mechanisms after lesion
• Stimulation with the ephrinB2 receptor EphB4 promotes a surface shift of AMPARs
• AMPARs surface shift restores impaired spine recovery after lesion in GRIP1 mutants
Summary
Despite decades of work, much remains elusive about molecular events at the interplay between physiological and structural changes underlying neuronal plasticity. Here, we combined repetitive live imaging and expansion microscopy in organotypic brain slice cultures to quantitatively characterize the dynamic changes of the intracellular versus surface pools of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) across the different dendritic spine types and the shaft during hippocampal homeostatic plasticity. Mechanistically, we identify ephrinB2 and glutamate receptor interacting protein (GRIP) 1 as mediating AMPAR relocation to the mushroom spine surface following lesion-induced denervation. Moreover, stimulation with the ephrinB2 specific receptor EphB4 not only prevents the lesion-induced disappearance of mushroom spines but is also sufficient to shift AMPARs to the surface and rescue spine recovery in a GRIP1 dominant-negative background. Thus, our results unravel a crucial role for ephrinB2 during homeostatic plasticity and identify a potential pharmacological target to improve dendritic spine plasticity upon injury.
Highlights
• Enables immunostaining and visualization of epitopes deep within brain slices
• Utilizes expansion microscopy to increase imaging resolution
• Optimized for brain organotypic slice cultures and tested in acute brain slices
• Analysis workflow for protein distribution (surface vs. intracellular pool) using Imaris
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Summary
Assessing protein distribution with super-resolution in tissue is often complicated and restrictive. Here, we describe a protocol for immunostaining and expansion microscopy imaging of mouse brain organotypic slice cultures. We detail an Imaris analysis workflow to analyze the surface vs intracellular distribution of AMPA receptors at super-resolution during homeostatic plasticity. We have optimized the protocol for brain organotypic slice culture and tested in acute brain slices. This protocol is suitable to study protein distribution under multiple plasticity paradigms.
The increasing incidence of infected skin wounds poses a major challenge in clinical practice, especially when conventional antibiotic therapy fails. In this context, bacteriophages emerged as promising alternatives for the treatment of antibiotic-resistant bacteria. However, clinical implementation remains hampered by the lack of efficient delivery approaches to infected wound tissue. In this study, bacteriophage-loaded electrospun fiber mats were successfully developed as next-generation wound dressings for the treatment of infected wounds. We employed a coaxial electrospinning approach, creating fibers with a protective polymer shell, enveloping bacteriophages in the core while maintaining their antimicrobial activity. The novel fibers exhibited a reproducible fiber diameter range and morphology, while the mechanical fiber properties were ideal for application onto wounds. Further, immediate release kinetics for the phages were confirmed as well as the biocompatibility of the fibers with human skin cells. Antimicrobial activity was demonstrated against Staphylococcus aureus and Pseudomonas aeruginosa and the core/shell formulation maintained the bacteriophage activity for 4 weeks when stored at − 20 °C. Based on these promising characteristics, our approach holds great potential as a platform technology for the encapsulation of bioactive bacteriophages to enable the translation of phage therapy into clinical application.