13.60.Le Meson production
Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Leptons (1)
- Meson production (1)
- Relativistic heavy-ion collisions (1)
Institute
Dilepton production in pp and Au+Au nucleus–nucleus collisions at s=200GeV as well as in In+In and Pb+Au at 158AGeV is studied within the microscopic HSD transport approach. A comparison to the data from the PHENIX Collaboration at RHIC shows that standard in-medium effects of the ρ,ω vector mesons—compatible with the NA60 data for In+In at 158AGeV and the CERES data for Pb+Au at 158AGeV—do not explain the large enhancement observed in the invariant mass regime from 0.2 to 0.5 GeV in Au+Au collisions at s=200 GeV relative to pp collisions.
We investigate transverse hadron spectra from relativistic nucleus-nucleus collisions which reflect important aspects of the dynamics - such as the generation of pressure - in the hot and dense zone formed in the early phase of the reaction. Our analysis is performed within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. Both transport models show their reliability for elementary pp as well as light-ion (C+C, Si+Si) reactions. However, for central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV the measured K+- transverse mass spectra have a larger inverse slope parameter than expected from the calculation. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding shows that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - is generated by strong partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.