29.20.db Storage rings and colliders
Refine
Year of publication
- 2009 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Beam dynamics (1)
- Speicherring (1)
- Storage ring (1)
- Strahldynamik (1)
- Toroidal magnetic field (1)
- Toroidalen Magnetfeld (1)
Institute
- Physik (1)
In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. This thesis regarding beam transport investigations is related to the larger research fields, storage rings used in accelerator physics and non-neutral plasmas. The proposal of building a storage ring with longitudinal guiding magnetic fields was made. Due to natural transversal focussing in magnetic fields it is possible to accumulate very intense charged particle beams, a subject of interest within the physics community. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. This code allows the user to generate different particle distributions as input parameter. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson’s equation. The circular toroidal coordinate system was used. The drift motion and gyrating motion was proved to be consistent with analytical values. Further simulations were performed to study the self field effects on beam transport. The experiments with single toroidal segments find niche in the work. The experiments were performed to compare the simulation results and gain practical experience. The toroidal segment has similar dimensions (major axis R = 1:3 m, minor axis r = 0:1 m, arc angle 30°) as for a full scale ring design. The main difference lies in the magnetic field strength. The available segments can be operated at room temperature producing 0:6T on axis maximum magnetic field, while for the storage ring design this value is in the range of 5T. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He+ and mixed p, H2+, H3+ beams were analyzed. The proton beam consisting of a 48% H+ fraction was extracted regularly and used for further experiments. A moderate beam energy of 10 keV was chosen as operational energy for which 3.08 mA proton beam current was measured. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The experiments with a single toroidal segment give basic results necessary to compare the results between transport code (TBT) and measurements. The optical diagnostic provides measurements which can be well compared with the simulated results. A digital camera with a magnetic shield was used to record images in jpeg file format. A subroutine was written to analyze an image file to give the intensity distribution of a given image file. The integrated profile in vertical and horizontal direction was used to calculate the vertical drift and the beam size. The simulated values were in good agreement with the measured ones. The injection system needs most care. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform experiments with room temperature segments. The main point to tackle was to smoothly bring the charged particles generated outside the trap into the acceptance of the ring. The designed system consists of two sources, one representing a ring beam and the other one the injection beam. While simulations showed a clear way, how to inject the particle beam via a well positioned solenoid and in combination with a transverse electric field element causing an ExB drift into the main ring acceptance. After construction of these injection elements it will be very important to measure the robustness of such a system with respect to the beam stability- especially of the injection channel.