33.15.Ry Ionization potentials, electron affinities, molecular core binding energy
Refine
Year of publication
- 2009 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Cluster (1)
- Photoionisation (1)
- Photoionization (1)
- Rückstoßimpulsspektroskopie (1)
- recoil ion momentum spectroscopy (1)
Institute
- Physik (1)
In der vorliegenden Arbeit wurde die 1s Photoionisation von Neondimeren mit einer Photonenenergie von 10 eV über der 1s Schwelle von Neon durchgeführt. Das Ziel dieser Messung war die Beantwortung der seit vielen Jahren diskutierten Frage nach der Lokalisierung oder Delokalisierung von Vakanzen in homonuklearen diatomaren Systemen am Beispiel des Neondimers. Können die Vakanzen also einem Atom des Dimers zugeordnet werden oder sind sie über beide Atome verteilt? Bezüglich dieser Frage wurden sowohl die in der Photoionisation direkt entstandenen 1s Vakanzen als auch die aus der Relaxation durch einen interatomic Coulombic decay (ICD) resultierenden Vakanzen in der Valenzschale des Neondimers untersucht. Als Observable dienten dabei die Elektronen-Winkelverteilungen im dimerfesten Koordinatensystem, wobei eine bezüglich der ‘rechten’ und der ‘linken’ Seite des homonuklearen diatomaren Moleküls auftretende Asymmetrie in der Winkelverteilung eindeutig eine Lokalisierung der Vakanz indiziert. Dies lässt sich damit begründen, dass die Elektronenwellen im Fall einer delokalisierten Vakanz durch die symmetrisierten Wellenfunktionen beschrieben werden, welche sich aus der kohärenten Überlagerung der lokalisierten Wellenfunktionen ergeben. Die resultierende Winkelverteilung der Elektronen um die Dimerachse ist somit symmetrisch. Im Fall einer lokalisierten Vakanz wird die Elektronenwelle dagegen durch die ‘rechts’ oder ‘links’ lokalisierten Wellenfunktionen, welche aus der kohärenten Überlagerung der symmetrisierten Wellenfunktionen gebildet werden, beschrieben, so dass abhängig von der Elektronenwellenlänge Asymmetrien in der Elektronen-Winkelverteilung auftreten können. Die Möglichkeit, eine eventuelle Asymmetrie in der Winkelverteilung um die Dimerachse zu beobachten ist allerdings nur dann gegeben, wenn die beiden Seiten des Dimers im Anschluss an die Reaktion unterscheidbar sind, d.h. der Ursprung des emittierten Elektrons feststellbar ist, da sich sonst der Fall einer ‘links’ lokalisierten Vakanz mit dem Fall einer ‘rechts’ lokalisierten Vakanz kohärent überlagert. Die Unterscheidung konnte in der vorliegenden Messung anhand der aus einigen Relaxationen hervorgehenden unterschiedlichen Ladungen der ionischen Fragmente des Neondimers durchgeführt werden. Insgesamt wurden im Anschluss an die 1s Photoionisation von Ne2 mit einer Rate von 3:1 der symmetrische Ladungsaufbruch Ne1+ + Ne1+ und der für die Untersuchung der Winkelverteilungen relevante asymmetrische Ladungsaufbruch Ne2+ + Ne1+ des Neondimers beobachtet. Alle in diesen beiden Ladungsaufbrüchen resultierenden intra- und interatomaren Relaxationsprozesse sowie ihre Raten wurden im Rahmen dieser Arbeit identifiziert und analysiert. Der dominante Zerfallskanal des symmetrischen Ladungsaufbruchs resultierte dabei aus dem im Anschluss an einen KL2,3L2,3 stattfindenden Radiative Charge Transfer, bei welchem unter Aussendung eines Photons ein Ladungsaustausch zwischen den Neonionen des Dimers stattfindet. Der dominante Zerfallskanal des asymmetrischen Ladungsaufbruchs wurde durch den im Anschluss an einen KL1L2,3 stattfindenden ICD bestimmt. Bei diesem in Clustern auftretenden Relaxationsprozess wird die Innerschalenvakanz aus Atom 1 durch ein Valenzelektron aus Atom 1 aufgefüllt. Sobald die Relaxationsenergie dabei nicht ausreicht, um, wie beim Augerzerfall, ein weiteres Valenzelektron aus Atom 1 zu ionisieren, wird die Energie mittels eines virtuellen Photons zum neutralen Nachbaratom des Dimers transferiert, und aus diesem wird ein Elektron, das ICD-Elektron, emittiert. Zur experimentellen Untersuchung der verschiedenen Zerfälle wurde die COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy)-Technik verwendet. Bei dieser Impulsspektroskopie werden die Fragmente mit einer Raumwinkelakzeptanz von 4pi mit Hilfe eines elektrischen und eines magnetischen Feldes auf die ortsauflösenden Detektoren geführt, und ihre Flugzeiten und Auftrefforte werden gemessen. Die COLTRIMS-Technik zeichnet sich dabei dadurch aus, dass eine koinzidente Messung der Elektronen und Ionen möglich ist, wodurch die Fragmente eines Reaktionsereignisses einander zugeordnet werden können. Innerhalb der Reaktionsereignisse fragmentierte das Neondimer im Anschluss an die Relaxation in beiden Ladungsaufbrüchen Ne1+ + Ne1+ und Ne2+ + Ne1+ unter 180° in einer Coulombexplosion. Somit spiegelten die Richtungen der Relativimpulse der Ionen im Rahmen der ‘Axial-Recoil-Approximation’ die Position der Dimerachse zum Zeitpunkt der Reaktion wider, und aus den Impulsen der Elektronen konnten die Emissionsrichtungen der Elektronen bezüglich der Dimerachse abgeleitet werden. In dieser Arbeit wurde mit der beschriebenen Messtechnik eine deutliche Asymmetrie in der Winkelverteilung der 1s Photoelektronen sowie der 2p ICD-Elektronen um die Dimerachse beobachtet. Die gemessene Winkelverteilung der 1s Photoelektronen wies dabei eine qualitativ sehr gute Übereinstimmung mit einer innerhalb einer Hartree-Fock-Rechnung erhaltenen Winkelverteilung für eine vollständig lokalisierte 1s Vakanz im Neondimer auf. Für die Winkelverteilungen der ICD-Elektronen existieren bis heute noch keine theoretischen Vorhersagen. Mit den Ergebnissen der vorliegenden Arbeit konnte somit gezeigt werden, dass entgegen den heute gängigen Theorien zur Beschreibung des Neondimers sowohl die Vakanzen der innersten Schale als auch die Vakanzen der Valenzschale des Neondimers als lokalisiert beschrieben werden müssen.