34.70.+e Charge transfer (for charge transfer in biological systems, see 82.39.Jn in physical chemistry)
Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- 3-atomic-heteronuclear molecule (1)
- COLTRIMS (1)
- Cluster (1)
- Coulombexplosion (1)
- Electron capture (1)
- Elektronenanlagerungsreaktion (1)
- Franck-Condon (1)
- Herzberg-Teller (1)
- Ion-Molecule collisions (1)
- Ion-Molekül-Stoß (1)
Institute
- Physik (3)
Vibronic (vibrational-electronic) transition is one of the fundamental processes in molecular physics. Indeed, vibronic transition is essential both in radiative and nonradiative photophysical or photochemical properties of molecules such as absorption, emission, Raman scattering, circular dichroism, electron transfer, internal conversion, etc. A detailed understanding of these transitions in varying systems, especially for (large) biomolecules, is thus of particular interest. Describing vibronic transitions in polyatomic systems with hundreds of atoms is, however, a difficult task due to the large number of coupled degrees of freedom. Even within the relatively crude harmonic approximation, such as for Born-Oppenheimer harmonic potential energy surfaces, the brute-force evaluation of Franck-Condon intensity profiles in a time-independent sum-over-states approach is prohibitive for complex systems owing to the vast number of multi-dimensional Franck-Condon integrals. The main goal of this thesis is to describe a variety of molecular vibronic transitions, with special focus on the development of approaches that are applicable to extended molecular systems. We use various representations of Fermi’s golden rule in frequency, time and phase spaces via coherent states to reduce the computational complexity. Although each representation has benefits and shortcomings in its evaluation, they complement each other. Peak assignment of a spectrum can be made directly after calculation in the frequency domain but this sum-over-states route is usually slow. In contrast, computation is considerably faster in the time domain with Fourier transformation but the peak assignment is not directly available. The representation in phase space does not immediately provide physically-meaningful quantities but it can link frequency and time domains. This has been applied to, herein, for example (non-Condon) absorption spectra of benzene and electron transfer of bacteriochlorophyll in the photosynthetic reaction center at finite temperature. This work is a significant step in the treatment of vibronic structure, allowing for the accurate and efficient treatment of complex systems, and provides a new analysis tool for molecular science.
Mit der vorliegenden Arbeit wurden zu ersten Mal die seit mehreren Jahren vorhergesagten dynamischen Aufbruchsmechanismen - der direkte, der sequentielle und der asynchrone Zerfall - in mehratomigen Molekülen kinematisch vollständig untersucht. Experimentell wurde hierfür ein Kohlenstoffdioxid-(CO2)-Molekül in langsamen Ion-Molekül Stößen dreifach ionisiert, indem die Elektronen des Targets von den langsamen, hochgeladenen Projektilionen (Ar8+-Ionen) eingefangen wurden. Die Untersuchung des Zerfalls des CO2-Ions in die einfach geladenen ionischen Fragmente C+ + O+ + O+ zeigte, dass bei diesem Zerfall das Projektilion vornehmlich einen positiven Ladungszustand von q = 6 und nicht den zunächst erwarteten Ladungszustand q = 5 aufweist. Dies ist darauf zurückzuführen, dass die eingefangenen Elektronen oftmals elektronisch hoch angeregte Zustände im Projektil populieren und demnach im weiteren Verlauf über Autoionisationsprozesse dieses auch wieder verlassen können. Ähnliche Autoionisationsprozesse können auch im Target ablaufen, treten dort jedoch mit einer geringeren Wahrscheinlichkeit auf, da der Wirkungsquerschnitt für Autoionisationsprozesse im Target um einen Faktor 1,3 kleiner ist als für Autoionisationen im Projektil. Zusätzlich zeigte die Untersuchung der Stoßdynamik, dass der dreifache Elektroneneinfang primär bei einer parallelen Orientierung der Molekülachse zur Projektilstrahlachse auftritt. Eine weitere Abhängigkeit der Stoßdynamik zum Beispiel vom Stoßparameter beziehungsweise vom Streuwinkel konnte nicht beobachtet werden. Durch die koinzidente Messung aller vier Reaktionsteilchen konnte der Kanal Ar8+ + CO2 --> Ar6+ + C+ + O+ + O+ eindeutig bestimmt werden und die Reaktionsdynamik des CO2-Ions nach dem Stoß analysiert werden. Dabei tritt deutlich der direkte Aufbruch hervor, bei welchem die drei einfach geladenen Ionen sich rein aufgrund ihrer Coulombkräfte voneinander abstoßen. Bei einer solchen Coulombexplosion bleibt dem Molekülion kaum Zeit, um eine molekulare Schwingung zu vollführen. Neben diesem schnellen Zerfall konnten aber auch jene Zerfälle beobachtet werden, bei denen das Molekülion zuerst molekular schwingt und dann zu einem späteren Zeitpunkt in die ionischen Fragmente zerfällt. Dieser letztere Zerfallsprozess gehört zu den sogenannten asynchronen Zerfallsmechanismen. Er stellt einen Zwischenprozess zwischen dem reinen 1-Stufen-Prozess wie dem direkten Aufbruch und dem reinen 2-Stufen-Prozess dar. Bei solchen sequentiellen 2-Stufen Prozessen fragmentiert das CO2-Molekül im ersten Schritt in ein O+- und ein CO2+-Ion. Im zweiten Schritt dissoziiert dann das CO2+-Fragment, nachdem es nahezu keine Wirkung der Coulombkräfte des ersten Sauerstoffions mehr spürt, in ein C+- und ein O+-Ion. Durch die Darstellung der Schwerpunktsimpulse der Fragmente in Dalitz- und Newton-Diagrammen ist es mit dieser Arbeit erstmals gelungen diesen sequentiellen Prozess experimentell eindeutig nachzuweisen. In der weiteren Analyse konnte gezeigt werden, dass über die im System deponierte Energie, welche über die kinetische Energie der Fragmente bestimmt wird, die verschiedenen Reaktionsmechanismen direkt kontrolliert werden können. Speziell bei Energien unterhalb von 20 eV wurde gezeigt, dass es keine Potentialflächen gibt, die über einen direkten bzw. simultanen Aufbruch zu dem Endzustand C+ + O+ + O+ führen. Bei mehratomigen Molekülen erweist sich das Treffen detaillierter Aussagen über mögliche Dissoziationskanäle ohne die genaue Kenntnis der Lage der Potentialflächen und den Übergängen zwischen diesen als äußerst schwierig. Selbst bei genauer Kenntnis der Lage und Form der Potentialflächen, ist es aufgrund der hohen Dichten innerhalb der Übergangsbereiche der Potentialflächen nahezu unmöglich, den Verlauf der Dissoziationskanäle zu verfolgen. Mit dieser Arbeit ist es gelungen, die verschiedenen Reaktionskanäle ohne die Existenz von Energiepotentialflächen eindeutig zu identifizieren. Außerdem konnte gezeigt werden, dass die Energie, die während des Stoßes im Molekül deponiert wird, eine Schlüsselgröße darstellt, mit welcher die Fragmentationskanäle direkt kontrolliert werden können.
In der vorliegenden Arbeit wurde die 1s Photoionisation von Neondimeren mit einer Photonenenergie von 10 eV über der 1s Schwelle von Neon durchgeführt. Das Ziel dieser Messung war die Beantwortung der seit vielen Jahren diskutierten Frage nach der Lokalisierung oder Delokalisierung von Vakanzen in homonuklearen diatomaren Systemen am Beispiel des Neondimers. Können die Vakanzen also einem Atom des Dimers zugeordnet werden oder sind sie über beide Atome verteilt? Bezüglich dieser Frage wurden sowohl die in der Photoionisation direkt entstandenen 1s Vakanzen als auch die aus der Relaxation durch einen interatomic Coulombic decay (ICD) resultierenden Vakanzen in der Valenzschale des Neondimers untersucht. Als Observable dienten dabei die Elektronen-Winkelverteilungen im dimerfesten Koordinatensystem, wobei eine bezüglich der ‘rechten’ und der ‘linken’ Seite des homonuklearen diatomaren Moleküls auftretende Asymmetrie in der Winkelverteilung eindeutig eine Lokalisierung der Vakanz indiziert. Dies lässt sich damit begründen, dass die Elektronenwellen im Fall einer delokalisierten Vakanz durch die symmetrisierten Wellenfunktionen beschrieben werden, welche sich aus der kohärenten Überlagerung der lokalisierten Wellenfunktionen ergeben. Die resultierende Winkelverteilung der Elektronen um die Dimerachse ist somit symmetrisch. Im Fall einer lokalisierten Vakanz wird die Elektronenwelle dagegen durch die ‘rechts’ oder ‘links’ lokalisierten Wellenfunktionen, welche aus der kohärenten Überlagerung der symmetrisierten Wellenfunktionen gebildet werden, beschrieben, so dass abhängig von der Elektronenwellenlänge Asymmetrien in der Elektronen-Winkelverteilung auftreten können. Die Möglichkeit, eine eventuelle Asymmetrie in der Winkelverteilung um die Dimerachse zu beobachten ist allerdings nur dann gegeben, wenn die beiden Seiten des Dimers im Anschluss an die Reaktion unterscheidbar sind, d.h. der Ursprung des emittierten Elektrons feststellbar ist, da sich sonst der Fall einer ‘links’ lokalisierten Vakanz mit dem Fall einer ‘rechts’ lokalisierten Vakanz kohärent überlagert. Die Unterscheidung konnte in der vorliegenden Messung anhand der aus einigen Relaxationen hervorgehenden unterschiedlichen Ladungen der ionischen Fragmente des Neondimers durchgeführt werden. Insgesamt wurden im Anschluss an die 1s Photoionisation von Ne2 mit einer Rate von 3:1 der symmetrische Ladungsaufbruch Ne1+ + Ne1+ und der für die Untersuchung der Winkelverteilungen relevante asymmetrische Ladungsaufbruch Ne2+ + Ne1+ des Neondimers beobachtet. Alle in diesen beiden Ladungsaufbrüchen resultierenden intra- und interatomaren Relaxationsprozesse sowie ihre Raten wurden im Rahmen dieser Arbeit identifiziert und analysiert. Der dominante Zerfallskanal des symmetrischen Ladungsaufbruchs resultierte dabei aus dem im Anschluss an einen KL2,3L2,3 stattfindenden Radiative Charge Transfer, bei welchem unter Aussendung eines Photons ein Ladungsaustausch zwischen den Neonionen des Dimers stattfindet. Der dominante Zerfallskanal des asymmetrischen Ladungsaufbruchs wurde durch den im Anschluss an einen KL1L2,3 stattfindenden ICD bestimmt. Bei diesem in Clustern auftretenden Relaxationsprozess wird die Innerschalenvakanz aus Atom 1 durch ein Valenzelektron aus Atom 1 aufgefüllt. Sobald die Relaxationsenergie dabei nicht ausreicht, um, wie beim Augerzerfall, ein weiteres Valenzelektron aus Atom 1 zu ionisieren, wird die Energie mittels eines virtuellen Photons zum neutralen Nachbaratom des Dimers transferiert, und aus diesem wird ein Elektron, das ICD-Elektron, emittiert. Zur experimentellen Untersuchung der verschiedenen Zerfälle wurde die COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy)-Technik verwendet. Bei dieser Impulsspektroskopie werden die Fragmente mit einer Raumwinkelakzeptanz von 4pi mit Hilfe eines elektrischen und eines magnetischen Feldes auf die ortsauflösenden Detektoren geführt, und ihre Flugzeiten und Auftrefforte werden gemessen. Die COLTRIMS-Technik zeichnet sich dabei dadurch aus, dass eine koinzidente Messung der Elektronen und Ionen möglich ist, wodurch die Fragmente eines Reaktionsereignisses einander zugeordnet werden können. Innerhalb der Reaktionsereignisse fragmentierte das Neondimer im Anschluss an die Relaxation in beiden Ladungsaufbrüchen Ne1+ + Ne1+ und Ne2+ + Ne1+ unter 180° in einer Coulombexplosion. Somit spiegelten die Richtungen der Relativimpulse der Ionen im Rahmen der ‘Axial-Recoil-Approximation’ die Position der Dimerachse zum Zeitpunkt der Reaktion wider, und aus den Impulsen der Elektronen konnten die Emissionsrichtungen der Elektronen bezüglich der Dimerachse abgeleitet werden. In dieser Arbeit wurde mit der beschriebenen Messtechnik eine deutliche Asymmetrie in der Winkelverteilung der 1s Photoelektronen sowie der 2p ICD-Elektronen um die Dimerachse beobachtet. Die gemessene Winkelverteilung der 1s Photoelektronen wies dabei eine qualitativ sehr gute Übereinstimmung mit einer innerhalb einer Hartree-Fock-Rechnung erhaltenen Winkelverteilung für eine vollständig lokalisierte 1s Vakanz im Neondimer auf. Für die Winkelverteilungen der ICD-Elektronen existieren bis heute noch keine theoretischen Vorhersagen. Mit den Ergebnissen der vorliegenden Arbeit konnte somit gezeigt werden, dass entgegen den heute gängigen Theorien zur Beschreibung des Neondimers sowohl die Vakanzen der innersten Schale als auch die Vakanzen der Valenzschale des Neondimers als lokalisiert beschrieben werden müssen.