520 Astronomie und zugeordnete Wissenschaften
Refine
Year of publication
Document Type
- Article (24)
- Doctoral Thesis (4)
- Book (3)
- Contribution to a Periodical (2)
- Part of a Book (1)
- Part of Periodical (1)
- Review (1)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- chromosphere (2)
- corona (2)
- eclipse weather (2)
- total solar eclipse (2)
- 61Cyg (1)
- AGN host galaxies (1)
- Accreting black holes (1)
- Arbeitsgemeinschaft Sammlung Deutscher Drucke (1)
- Astronomie (1)
- Barnards Star (1)
Institute
- Physik (14)
- Extern (5)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Präsidium (3)
- Fachübergreifend (1)
The gas-phase reaction of O + H₃⁺ has two exothermic product channels: OH+ + H2 and H2O+ + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH+ + H2 versus H2O+ + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O(3PJ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.
Buch des Monats März 2023
(2023)
Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses.
We present the first very long baseline interferometric (VLBI) observations of the blazar OJ 287 carried out jointly with the Global Millimeter VLBI Array (GMVA) and the phased Atacama Large Millimeter/submillimeter Array (ALMA) at 3.5 mm on 2017 April 2. The participation of phased ALMA has not only improved the GMVA north–south resolution by a factor of ∼3, but has also enabled fringe detections with signal-to-noise ratios up to 300 at baselines longer than 2 Gλ. The high sensitivity has motivated us to image the data with newly developed regularized maximum likelihood imaging methods, revealing the innermost jet structure with unprecedentedly high angular resolution. Our images reveal a compact and twisted jet extending along the northwest direction, with two bends within the inner 200 μas, resembling a precessing jet in projection. The component at the southeastern end shows a compact morphology and high brightness temperature, and is identified as the VLBI core. An extended jet feature that lies at ∼200 μas northwest of the core shows a conical shape, in both total and linearly polarized intensity, and a bimodal distribution of the linear polarization electric vector position angle. We discuss the nature of this feature by comparing our observations with models and simulations of oblique and recollimation shocks with various magnetic field configurations. Our high-fidelity images also enabled us to search for possible jet features from the secondary supermassive black hole (SMBH) and test the SMBH binary hypothesis proposed for this source.
The cosmological implications of the Covariant Canonical Gauge Theory of Gravity (CCGG) are investigated. CCGG is a Palatini theory derived from first principles using the canonical transformation formalism in the covariant Hamiltonian formulation. The Einstein-Hilbert theory is thereby extended by a quadratic Riemann-Cartan term in the Lagrangian. Moreover, the requirement of covariant conservation of the stress-energy tensor leads to necessary presence of torsion. In the Friedman universe that promotes the cosmological constant to a time-dependent function, and gives rise to a geometrical correction with the EOS of dark radiation. The resulting cosmology, compatible with the ΛCDM parameter set, encompasses bounce and bang scenarios with graceful exits into the late dark energy era. Testing those scenarios against low-z observations shows that CCGG is a viable theory.
Consequences of minimal length discretization on line element, metric tensor, and geodesic equation
(2021)
When minimal length uncertainty emerging from a generalized uncertainty principle (GUP) is thoughtfully implemented, it is of great interest to consider its impacts on gravitational Einstein field equations (gEFEs) and to try to assess consequential modifications in metric manifesting properties of quantum geometry due to quantum gravity. GUP takes into account the gravitational impacts on the noncommutation relations of length (distance) and momentum operators or time and energy operators and so on. On the other hand, gEFE relates classical geometry or general relativity gravity to the energy–momentum tensors, that is, proposing quantum equations of state. Despite the technical difficulties, we intend to insert GUP into the metric tensor so that the line element and the geodesic equation in flat and curved space are accordingly modified. The latter apparently encompasses acceleration, jerk, and snap (jounce) of a particle in the quasi-quantized gravitational field. Finite higher orders of acceleration apparently manifest phenomena such as accelerating expansion and transitions between different radii of curvature and so on.
Weltweit arbeiten Astrophysiker noch immer mit einer Theorie, die bereits vor rund 100 Jahren aufgestellt wurde – die Einstein’sche Relativitätstheorie. Nahezu jeder hat den genialen Kopf dahinter vor Augen: Albert Einstein. Was aber ist der von Einstein prognostizierte gekrümmte Raum, was sind schwarze Löcher und Neutronensterne und wer sind die Menschen, die auf diesen Gebieten forschen? Luciano Rezzolla, seit Oktober 2013 Professor für Theoretische Astrophysik an der Goethe-Universität sowie Leiter einer Arbeitsgruppe am Max-Planck-Institut für Gravitationsphysik in Potsdam, ist einer dieser Forscher.
s-processing in asymptotic giant branch stars in the light of revised neutron-capture cross sections
(2021)
Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a best set of neutron-capture cross sections was recently re-evaluated. Using stellar models prescribing that the 13C pocket is a by-product of magnetic-buoyancy-induced mixing phenomena, s-process calculations were carried out with this database. Significant effects are found for a few s-only and branching point isotopes, pointing out the need for improved neutron-capture cross section measurements at low energy.
Kleine Planeten oder Planetoiden, zu denen auch der Planetoid "Rilke" gehört, sind Überreste aus der Zeit der Entstehung unseres Sonnensystems. In den Bereichen, in denen sich die Mehrzahl der kleinen Planeten auch jetzt noch befindet (dem Planetoidengürtel), sind sie auch entstanden - vor etwa fünf Milliarden Jahren. In diesen Bereichen unseres Sonnensystems hatte die Menge des für die Bildung fester Körper verfügbaren Materials nicht einen einzigen großen Körper, sondern eine Vielzahl kleiner Körper gebildet.