540 Chemie und zugeordnete Wissenschaften
Refine
Year of publication
Document Type
- Doctoral Thesis (581)
- Article (527)
- Book (22)
- Contribution to a Periodical (16)
- Conference Proceeding (11)
- Report (9)
- Preprint (6)
- diplomthesis (5)
- Other (2)
- Review (2)
Has Fulltext
- yes (1183)
Is part of the Bibliography
- no (1183)
Keywords
- crystal structure (30)
- NMR spectroscopy (12)
- RNA (12)
- NMR (10)
- hydrogen bonding (10)
- Nanopartikel (8)
- Proteomics (8)
- Organische Synthese (7)
- SARS-CoV-2 (7)
- photochemistry (7)
Institute
- Biochemie und Chemie (737)
- Biochemie, Chemie und Pharmazie (191)
- Pharmazie (151)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (34)
- Biowissenschaften (29)
- Präsidium (27)
- Exzellenzcluster Makromolekulare Komplexe (18)
- Physik (16)
- Sonderforschungsbereiche / Forschungskollegs (12)
- Medizin (11)
The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.
The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.
Mechanism of the MHC I chaperone TAPBPR and its role in promoting UGGT1-mediated quality control
(2022)
Information about the health status of most nucleated cells is provided through peptides presented on major histocompatibility complex I (pMHC I) on the cell surface. T cell receptors of CD8+ T cells constantly monitor these complexes and allow the immune system to detect and eliminate infected or cancerous cells. Antigenic peptides displayed on MHC I are typically derived from the cellular proteome and are translocated into the lumen of the endoplasmic reticulum (ER) by the ATP-binding cassette (ABC) transporter associated with antigen processing (TAP), which is part of the peptide-loading complex (PLC). In a process called peptide editing, the MHC I-dedicated chaperone tapasin (Tsn) selects peptides for their ability to form stable complexes with MHC I. While initial peptide loading is catalyzed in the confines of the PLC, the second quality control is mediated by TAPBPR, operating in the peptide-depleted cis-Golgi network. TAPBPR was shown to have a more fine-tuning effect on the presented peptide repertoire rather than initial peptide selection. The fundamental mechanism of peptide editing was illuminated by two crystal structures of TAPBPR in complex with peptide-receptive MHC I. Notably, one of these structures reported a structural element that inserted into the peptidebinding pocket. The so-called scoop loop was assumed to be involved in mediating peptide exchange but the underlying mechanism remained undefined. Additionally, latest results suggested that TAPBPR mediates the interaction of the glucosyltransferase UGGT1 with peptide-receptive MHC. To expand the current knowledge of quality control processes in the antigen presentation pathway, the contribution of the scoop loop in peptide editing and the role of TAPBPR in UGGT1-mediated quality control needs to be elucidated. In the first part of this study, TAPBPR proteins with various loop lengths were designed to scrutinize the contribution of the scoop loop in chaperoning peptidereceptive MHC I. In a light-driven approach, the ability of TAPBPR variants to form stable complexes with peptide-free MHC I was tested. These results demonstrated that in a peptide-depleted environment, the scoop loop is of critical importance for TAPBPR to chaperone intrinsically unstable, peptidereceptive MHC I clients. Moreover, fluorescence polarization-based assays allowed the pursuit of peptide exchange in different, native-like environments. Peptide displacement activities of TAPBPR variants illustrated that catalyzed peptide editing is primarily induced by structural elements outside the scoop loop. In a peptide-depleted environment, the scoop loop occupies the position of the peptide C-terminus and acts as an internal peptide surrogate. By combining complex formation and fluorescence polarization experiments, the scoop loop of TAPBPR was shown to be critically important in stabilizing empty MHC I and functions as an internal peptide selector. In the second part of this study, a novel in-vitro glucosylation assay was established to examine the role of TAPBPR in UGGT1-catalyzed re-glucosylation of TAPBPR-bound MHC I clients. Therefore, a peptide-free MHC I-TAPBPR complex with defined glycan species was designed which served as physiological substrate for UGGT1. By subjecting the recombinantly expressed HLA-A*68:02- TAPBPR complex and UGGT1 proteins to the new in-vitro system, UGGT1 was shown to catalyze the transfer of a glucose residue to the N-linked glycan of TAPBPR-bound Man9GlcNAc2-HLA-A*68:02. Moreover, a high-affinity, photocleavable peptide was applied to dissociate the MHC I-chaperone complex. However, in the absence of TAPBPR, no glucosyltransferase activity was observed. Generation of peptide-free MHC I through UV illumination also showed no activity, and only the addition of TAPBPR could restore UGGT1-mediated reglucosylation of the empty MHC I. Independent of the peptide status of HLAA*68:02, the combination of protein glycoengineering and LC-MS analysis implicated that UGGT1 exclusively acts on TAPBPR-chaperoned HLA-A*68:02. The newly established system provided insights into the function of TAPBPR during UGGT1-catalyzed re-glucosylation activity and quality control of MHC I. Taken together, the scoop loop allows TAPBPR to function as MHC I chaperone through stabilizing peptide-receptive MHC I. In a peptide-depleted environment, the loop structure serves as an internal peptide surrogate and can only be dislodged by a high-affinity peptide. Based on these findings, TAPBPR fulfills a dual function in the second level of quality control. On the one hand, TAPBPR functions as peptide editor, shaping the repertoire of presented peptides. On the other hand, TAPBPR mediates peptide-receptive MHC I clients to the folding sensor UGGT1. Here, TAPBPR is essential to promote UGGT1-catalyzed reglucosylation of the N-linked glycan, giving MHC I a second chance to be loaded with an optimal peptide cargo in the peptide loading complex.
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
LINKED ARTICLES
This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc
Mixed-valence compounds as polarizing agents for overhauser dynamic nuclear polarization in solids
(2021)
Herein, we investigate a novel set of polarizing agents—mixed-valence compounds—by theoretical and experimental methods and demonstrate their performance in high-field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed-valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser-DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra-high magnetic fields.
The concept of using precipitation inhibitors (PIs) to sustain supersaturation is well established for amorphous formulations but less in the case of lipid-based formulations (LBF). This study applied a systematic in silico–in vitro–in vivo approach to assess the merits of incorporating PIs in supersaturated LBFs (sLBF) using the model drug venetoclax. sLBFs containing hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinylpyrrolidone (PVP), PVP-co-vinyl acetate (PVP/VA), Pluronic F108, and Eudragit EPO were assessed in silico calculating a drug–excipient mixing enthalpy, in vitro using a PI solvent shift test, and finally, bioavailability was assessed in vivo in landrace pigs. The estimation of pure interaction enthalpies of the drug and the excipient was deemed useful in determining the most promising PIs for venetoclax. The sLBF alone (i.e., no PI present) displayed a high initial drug concentration in the aqueous phase during in vitro screening. sLBF with Pluronic F108 displayed the highest venetoclax concentration in the aqueous phase and sLBF with Eudragit EPO the lowest. In vivo, the sLBF alone showed the highest bioavailability of 26.3 ± 14.2%. Interestingly, a trend toward a decreasing bioavailability was observed for sLBF containing PIs, with PVP/VA being significantly lower compared to sLBF alone. In conclusion, the ability of a sLBF to generate supersaturated concentrations of venetoclax in vitro was translated into increased absorption in vivo. While in silico and in vitro PI screening suggested benefits in terms of prolonged supersaturation, the addition of a PI did not increase in vivo bioavailability. The findings of this study are of particular relevance to pre-clinical drug development, where the high in vivo exposure of venetoclax was achieved using a sLBF approach, and despite the perceived risk of drug precipitation from a sLBF, including a PI may not be merited in all cases.
Druggability Evaluation of the Neuron Derived Orphan Receptor (NOR-1) Reveals Inverse NOR-1 Agonists
(2022)
The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.
Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein–protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of αc ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01–0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625–0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.