550 Geowissenschaften
Refine
Year of publication
Document Type
- Article (821)
- Doctoral Thesis (178)
- Contribution to a Periodical (29)
- Book (26)
- Working Paper (22)
- Part of Periodical (20)
- Conference Proceeding (15)
- diplomthesis (15)
- Part of a Book (8)
- Other (5)
Language
Keywords
- climate change (10)
- Klima (7)
- Klimaänderung (7)
- Modellierung (7)
- Climate change (6)
- Klimawandel (6)
- Atmospheric chemistry (5)
- COSMO-CLM (5)
- Deutschland (5)
- Geologie (5)
Institute
- Geowissenschaften (734)
- Geowissenschaften / Geographie (94)
- Geographie (60)
- Biodiversität und Klima Forschungszentrum (BiK-F) (59)
- Senckenbergische Naturforschende Gesellschaft (47)
- Präsidium (41)
- Extern (29)
- Biowissenschaften (21)
- Institut für Ökologie, Evolution und Diversität (8)
- Institut für sozial-ökologische Forschung (ISOE) (5)
Beim Clusterprojekt ELEMENTS von Goethe-Universität, TU Darmstadt, Universität Gießen und GSI Helmholtzzentrum für Schwerionenforschung arbeiten Theorie und Experiment Hand in Hand, um die Struktur der Materie unter extremen Bedingungen zu verstehen. So wird ersichtlich, warum etwa Kollisionen von Neutronensternen viele der schweren Elemente auf unserem Planeten geliefert haben.
Vor mehr als vier Milliarden Jahren prägten heiße Magma-Ozeane die Oberfläche der Erde. Als die Erde allmählich abkühlte, bildeten sich an manchen Stellen Krusten, später die ersten Kontinente. Die Geowissenschaftlerin Dr. Sonja Aulbach erforscht die damals ablaufenden Prozesse anhand spezieller Gesteinsproben und mit hochmoderner Analysetechnik.
Global water models (GWMs) simulate the terrestrial water cycle on the global scale and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modelling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how 16 state-of-the-art GWMs are designed. We analyse water storage compartments, water flows, and human water use sectors included in models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to enhance model intercomparison, improvement, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Six models used six compartments, while four models (DBH, JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. We conclude that, even though hydrological processes are often based on similar equations for various processes, in the end these equations have been adjusted or models have used different values for specific parameters or specific variables. The similarities and differences found among the models analysed in this study are expected to enable us to reduce the uncertainty in multi-model ensembles, improve existing hydrological processes, and integrate new processes.
This paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS (Chemical Lagrangian Model of the Stratosphere), driven by reanalysis winds and total diabatic heating rates. ERA5-based results are compared to results based on the preceding ERA-Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA-Interim, manifesting in weaker diabatic heating rates and higher age of air. In the tropical lower stratosphere, heating rates are 30 %–40 % weaker in ERA5, likely correcting a bias in ERA-Interim. At 20 km and in the Northern Hemisphere (NH) stratosphere, ERA5 age values are around the upper margin of the uncertainty range from historical tracer observations, indicating a somewhat slow–biased BDC. The age trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear but steplike, potentially caused by multi-annual variability or changes in the observations included in the assimilation. During the 2002–2012 period, the ERA5 age shows a similar hemispheric dipole trend pattern as ERA-Interim, with age increasing in the NH and decreasing in the Southern Hemisphere (SH). Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates in both reanalyses, whereas the deep branch accelerates in ERA5 and decelerates in ERA-Interim.
Central Europe was affected by a compressional tectonic event in the Late Cretaceous, caused by the convergence of Iberia and Europe. Basement uplifts, inverted graben structures and newly formed marginal troughs are the main expressions of crustal shortening. Although the maximum activity occurred in a short period between 90 and 75 Ma, the exact timing of this event is still unclear. Dating of start and end of basin inversion is very different depending on the applied method. On the basis of borehole data, facies and thickness maps, the timing of basin re-organisation was reconstructed for several basins in Central Europe. The obtained data point to a synchronous start of basin inversion already at 95 Ma (Cenomanian), 5 Million years earlier than commonly assumed. The end of the Late Cretaceous compressional event is more difficult to pinpoint, because regional uplift and salt migration disturb the signal of shifting marginal troughs. Unconformities of Late Campanian to Paleogene age on inverted structures indicate slowly declining uplift rates.
Teleconnections of the Quasi-Biennial Oscillation in a multi-model ensemble of QBO-resolving models
(2021)
The Quasi-biennial Oscillation (QBO) dominates the interannual variability of the tropical stratosphere and influences other regions of the atmosphere. The high predictability of the QBO implies that its teleconnections could lead to increased skill of seasonal and decadal forecasts provided the relevant mechanisms are accurately represented in models. Here modelling and sampling uncertainties of QBO teleconnections are examined using a multi-model ensemble of QBO-resolving atmospheric general circulation models that have carried out a set of coordinated experiments as part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) QBO initiative (QBOi). During Northern Hemisphere winter, the stratospheric polar vortex in most of these models strengthens when the QBO near 50 hPa is westerly and weakens when it is easterly, consistent with, but weaker than, the observed response. These weak responses are likely due to model errors, such as systematically weak QBO amplitudes near 50 hPa, affecting the teleconnection. The teleconnection to the North Atlantic Oscillation is less well captured overall, but of similar strength to the observed signal in the few models that do show it. The models do not show clear evidence of a QBO teleconnection to the Northern Hemisphere Pacific-sector subtropical jet.
The evolution and interrelationships of carnivorous squamates (mosasaurs, snakes, monitor lizards, Gila Monsters) are a contentious part of reptile systematics and go to the heart of conflict between morphological and molecular data in inferring evolutionary history. One of the best-preserved fossils in this motley grouping is “Saniwa” feisti Stritzke, 1983, represented by complete skeletons from the early-middle Eocene of Messel, Germany. We re-describe it on the basis of superficial examination, stereoradiography, and high-resolution X-ray computed tomography of new and published specimens. The scalation of the lizard is unique, consisting of small, keeled scales on the head (including a row of enlarged medial supraorbitals) and large, rhomboidal, keeled scales (invested by osteoderms) that covered the rest of the body. Two paired longitudinal rows of enlarged scales ran down the neck. The head was laterally compressed and box-shaped due to the presence of a strong canthal-temporal ridge; the limbs and tail were very long. Notable osteological features include: a toothed, strap-like vomer; septomaxilla with a long posterior process; palpebral with a long posterolateral process; a lacrimal boss and a single lacrimal foramen; a well-developed cultriform process of the parabasisphenoid; two hypoglossal (XII) foramina in addition to the vagus; a lack of resorption pits for replacement teeth; and possibly the presence of more than one wave of developing replacement teeth per locus. There are no osteological modifications suggestive of an intramandibular hinge, but postmortem displacement of the angular-prearticular-surangular complex in multiple specimens suggests that there might have been some degree of mobility in the lower jaw based on soft-tissue modifications. Using phylogenetic analyses on a data-set comprising 473 morphological characters and 46 DNA loci, we infer that a monophyletic Palaeovaranidae Georgalis, 2017, including Eosaniwa Haubold, 1977, lies on the stem of Varanidae Merrem, 1820, basal to various Cretaceous Mongolian taxa. We transfer feisti to the new genus Paranecrosaurus n. gen. Analysis of gut contents reveals only the second known specimen of the cryptozoic lizard Cryptolacerta hassiaca Müller, Hipsley, Head, Kardjilov, Hilger, Wuttke & Reisz, 2011, confirming a diet that was at least partly carnivorous; the preservation of the teeth of C. hassiaca suggests that the gastric physiology of Paranecrosaurus feisti (Stritzke, 1983) n. comb. had high acidity but low enzyme activity. Based on the foregoing and linear discriminant function analysis, we reconstruct P. feisti n. comb., as a powerful, widely roaming, faunivorous-carnivorous stem monitor lizard with a sensitive snout. If the molecular phylogeny of anguimorphs is correct, then many of the features shared by Helodermatidae Gray, 1837 and Varanidae must have arisen convergently, partly associated with diet. In that case, a reconciliation of morphological and molecular data would require the discovery of equally primitive fossils on the helodermatid stem.
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
(2021)
Iodine species are important in the marine atmosphere for oxidation and new-particle formation. Understanding iodine chemistry and iodine new-particle formation requires high time resolution, high sensitivity, and simultaneous measurements of many iodine species. Here, we describe the application of a bromide chemical ionization mass spectrometer (Br-CIMS) to this task. During the iodine oxidation experiments in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber, we have measured gas-phase iodine species and sulfuric acid using two Br-CIMS, one coupled to a Multi-scheme chemical IONization inlet (Br-MION-CIMS) and the other to a Filter Inlet for Gasses and AEROsols inlet (Br-FIGAERO-CIMS). From offline calibrations and intercomparisons with other instruments, we have quantified the sensitivities of the Br-MION-CIMS to HOI, I2, and H2SO4 and obtained detection limits of 5.8 × 106, 3.8 × 105, and 2.0 × 105 molec. cm−3, respectively, for a 2 min integration time. From binding energy calculations, we estimate the detection limit for HIO3 to be 1.2 × 105 molec. cm−3, based on an assumption of maximum sensitivity. Detection limits in the Br-FIGAERO-CIMS are around 1 order of magnitude higher than those in the Br-MION-CIMS; for example, the detection limits for HOI and HIO3 are 3.3 × 107 and 5.1 × 106 molec. cm−3, respectively. Our comparisons of the performance of the MION inlet and the FIGAERO inlet show that bromide chemical ionization mass spectrometers using either atmospheric pressure or reduced pressure interfaces are well-matched to measuring iodine species and sulfuric acid in marine environments.
Previous investigation of seismic anisotropy indicates the presence of a simple mantle flow regime beneath the Turkish-Anatolian Plateau and Arabian Plate. Numerical modeling suggests that this simple flow is a component of a large-scale global mantle flow associated with the African superplume, which plays a key role in the geodynamic framework of the Arabia-Eurasia continental collision zone. However, the extent and impact of the flow pattern farther east beneath the Iranian Plateau and Zagros remains unclear. While the relatively smoothly varying lithospheric thickness beneath the Anatolian Plateau and Arabian Plate allows progress of the simple mantle flow, the variable lithospheric thickness across the Iranian Plateau is expected to impose additional boundary conditions on the mantle flow field. In this study, for the first time, we use an unprecedented data set of seismic waveforms from a network of 245 seismic stations to examine the mantle flow pattern and lithospheric deformation over the entire region of the Iranian Plateau and Zagros by investigation of seismic anisotropy. We also examine the correlation between the pattern of seismic anisotropy, plate motion using GPS velocities and surface strain fields. Our study reveals a complex pattern of seismic anisotropy that implies a similarly complex mantle flow field. The pattern of seismic anisotropy suggests that the regional simple mantle flow beneath the Arabian Platform and eastern Turkey deflects as a circular flow around the thick Zagros lithosphere. This circular flow merges into a toroidal component beneath the NW Zagros that is likely an indicator of a lateral discontinuity in the lithosphere. Our examination also suggests that the main lithospheric deformation in the Zagros occurs as an axial shortening across the belt, whereas in the eastern Alborz and Kopeh-Dagh a belt-parallel horizontal lithospheric deformation plays a major role.