570 Biowissenschaften; Biologie
Refine
Year of publication
Document Type
- Article (2805)
- Doctoral Thesis (1216)
- Book (361)
- Part of Periodical (344)
- Review (93)
- Contribution to a Periodical (50)
- Preprint (44)
- Part of a Book (24)
- Periodical (20)
- Conference Proceeding (15)
Language
- German (2544)
- English (2317)
- French (68)
- Latin (36)
- dut (16)
- Multiple languages (16)
- Italian (3)
- Danish (2)
- Portuguese (2)
- mis (1)
Keywords
- RNA (19)
- Biodiversität (18)
- NATURA 2000 (16)
- SARS-CoV-2 (16)
- biodiversity (16)
- NMR spectroscopy (15)
- taxonomy (15)
- aging (14)
- Cell biology (13)
- NMR (13)
Institute
- Biowissenschaften (1316)
- Biochemie und Chemie (583)
- Biochemie, Chemie und Pharmazie (253)
- Medizin (233)
- Institut für Ökologie, Evolution und Diversität (162)
- Senckenbergische Naturforschende Gesellschaft (126)
- Biodiversität und Klima Forschungszentrum (BiK-F) (122)
- Pharmazie (109)
- Exzellenzcluster Makromolekulare Komplexe (107)
- Extern (104)
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimised this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multi-protein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically-induced mtDNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230–370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.
This work characterizes the post-PKS modifications of AQ-256. Additionally, the second part describes the establishment of an AQ production platform for electrolyte generation that can be utilized in redox-flow-batteries. Lastly, a silent BGC that encodes the genes for terpenoid biosynthesis was described and characterized with regards to product formation and putative ecological function.
Rhizomes from Zingiber officinale Roscoe are traditionally used for the treatment of a plethora of pathophysiological conditions such as diarrhea, nausea, or rheumatoid arthritis. While 6-gingerol is the pungent principle in fresh ginger, in dried rhizomes, 6-gingerol is dehydrated to 6-shogaol. 6-Shogaol has been demonstrated to exhibit anticancer, antioxidative, and anti-inflammatory actions more effectively than 6-gingerol due to the presence of an electrophilic Michael acceptor moiety. In vitro, 6-shogaol exhibits anti-inflammatory actions in a variety of cell types, including leukocytes. Our study focused on the effects of 6-shogaol on activated endothelial cells. We found that 6-shogaol significantly reduced the adhesion of leukocytes onto lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs), resulting in a significantly reduced transmigration of THP-1 cells through an endothelial cell monolayer. Analyzing the mediators of endothelial cell–leukocyte interactions, we found that 30 µM of 6-shogaol blocked the LPS-triggered mRNA and protein expression of cell adhesion molecules. In concert with this, our study demonstrates that the LPS-induced nuclear factor κB (NFκB) promoter activity was significantly reduced upon treatment with 6-shogaol. Interestingly, the nuclear translocation of p65 was slightly decreased, and protein levels of the LPS receptor Toll-like receptor 4 remained unimpaired. Analyzing the impact of 6-shogaol on angiogenesis-related cell functions in vitro, we found that 6-shogaol attenuated the proliferation as well as the directed and undirected migration of HUVECs. Of note, 6-shogaol also strongly reduced the chemotactic migration of endothelial cells in the direction of a serum gradient. Moreover, 30 µM of 6-shogaol blocked the formation of vascular endothelial growth factor (VEGF)-induced endothelial sprouts from HUVEC spheroids and from murine aortic rings. Importantly, this study shows for the first time that 6-shogaol exhibits a vascular-disruptive impact on angiogenic sprouts from murine aortae. Our study demonstrates that the main bioactive ingredient in dried ginger, 6-shogaol, exhibits beneficial characteristics as an inhibitor of inflammation- and angiogenesis-related processes in vascular endothelial cells.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disturbance of the heart rhythm (arrhythmia) that is induced by stress or that occurs during exercise. Most mutations that have been linked to CPVT are found in two genes, i.e., ryanodine receptor 2 (RyR2) and calsequestrin 2 (CASQ2), two proteins fundamentally involved in the regulation of intracellular Ca2+ in cardiac myocytes. We inserted six CPVT-causing mutations via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 into unc-68 and csq-1, the Caenorhabditis elegans homologs of RyR and CASQ, respectively. We characterized those mutations via video-microscopy, electrophysiology, and calcium imaging in our previously established optogenetic arrhythmia model. In this study, we additionally enabled high(er) throughput recordings of intact animals by combining optogenetic stimulation with a microfluidic chip system. Whereas only minor/no pump deficiency of the pharynx was observed at baseline, three mutations of UNC-68 (S2378L, P2460S, Q4623R; RyR2-S2246L, -P2328S, -Q4201R) reduced the ability of the organ to follow 4 Hz optogenetic stimulation. One mutation (Q4623R) was accompanied by a strong reduction of maximal pump rate. In addition, S2378L and Q4623R evoked an altered calcium handling during optogenetic stimulation. The 1,4-benzothiazepine S107, which is suggested to stabilize RyR2 channels by enhancing the binding of calstabin2, reversed the reduction of pumping ability in a mutation-specific fashion. However, this depends on the presence of FKB-2, a C. elegans calstabin2 homolog, indicating the involvement of calstabin2 in the disease-causing mechanisms of the respective mutations. In conclusion, we showed for three CPVT-like mutations in C. elegans RyR a reduced pumping ability upon light stimulation, i.e., an arrhythmia-like phenotype, that can be reversed in two cases by the benzothiazepine S107 and that depends on stabilization via FKB-2. The genetically amenable nematode in combination with optogenetics and high(er) throughput recordings is a promising straightforward system for the investigation of RyR mutations and the selection of mutation-specific drugs.
During mycological explorations, a new smooth spored species, Inocybe subhimalayanensis Razzaq, Naseer & Khalid sp. nov. was collected from moist temperate sub-Himalayan region, Pakistan. Phylogeny of ITS and LSU regions of nrDNA, and morphoanatomical data make it distinct from other known species of the genus. The taxon is characterized by: a yellowish orange to brown pileus with prominent fibrillose, prominent umbo; ellipsoid to amygdaliform smooth larger basidiospores (8.4‒)8.6‒12.2(‒12.6) × (4.9‒)5.1‒7.1(‒7.3) µm; and lack of velipellis. Molecular phylogenetic analyses further support the recognition of the new species.
Background: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples.
Results: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations.
Conclusions: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.
Using walls to navigate the room: egocentric representations of borders for spatial navigation
(2021)
Spatial navigation forms one of the core components of an animal’s behavioural repertoire. Good navigational skills boost survival by allowing one to avoid predators, to search successfully for food in an unpredictable world, and to be able to find a mating partner. As a consequence, the brain has dedicated many of its resources to the processing of spatial information. Decades of seminal work has revealed how the brain is able to form detailed representations of one’s current position, and use an internal cognitive map of the environment to traverse the local space. However, what is much less understood is how neural computations of position depend on distance information of salient external locations such as landmarks, and how these distal places are encoded in the brain.
The work in this thesis explores the role of one brain region in particular, the retrosplenial cortex (RSC), as a key area to implement distance computations in relation to distal landmarks. Previous research has shown that damage to the RSC results in losses of spatial memory and navigation ability, but its exact role in spatial cognition remains unclear. Initial electrophysiological recordings of single cells in the RSC during free exploration behaviour of the animal resulted in the discovery of a new population of neurons that robustly encode distance information towards nearby walls throughout the environment. Activity of these border cells was characterized by high firing rates near all boundaries of the arena that were available to the animal, and sensory manipulation experiments revealed that this activity persisted in the absence of direct visual or somatosensory detection of the wall.
It quickly became apparent that border cell activity was not only modulated by the distance to walls, but was contingent on the direction the animal was facing relative to the boundary. Approximately 40% of neurons displayed significant selectivity to the direction of walls, mostly in the hemifield contra-lateral to the recorded hemisphere, such that a neuron in left RSC is active whenever a wall occupies proximal space on the right side of the animal. Using a cue-rotation paradigm, experiments initially showed that this egocentric direction information was invariant to the physical rotation of the arena. Yet this rotation elicited a corresponding shift in the preferred direction of local head-direction cells, as well as a rotation in the firing fields of spatially-tuned cells in RSC. As a consequence, position and direction encoding in RSC must be bound together, rotating in unison during the environmental manipulations, as information about allocentric boundary locations is integrated with head-direction signals to form egocentric border representations.
It is known that the RSC forms many anatomical connections with other parts of the brain that encode spatial information, like the hippocampus and para-hippocampal areas. The next step was to establish the circuit mechanisms in place for RSC neurons to generate their activity in respect to the distance and direction of walls. A series of inactivation experiments revealed how RSC activity is inter-dependent with one of its communication partners, the medial entorhinal cortex (MEC). Together they form a wider functional network that encodes precise spatial information of borders, with information flowing from the MEC to RSC but not vice versa. While the conjunction between distance and heading direction relative to the outer walls was the main driver of neural activity in RSC, border cells displayed further behavioural correlates related to movement trajectories. Spiking activity in either hemisphere tended to precede turning behaviour on a short time-scale in a way that border cells in the right RSC anticipated right-way turns ~300 ms into the future.
The interpretation of these results is that the RSC’s primary role in spatial cognition is not necessarily on the early sensory processing stage as suggested by previous studies. Instead, it is involved in computations related to the generation of motion plans, using spatial information that is processed in other brain areas to plan and execute future actions. One potential function of the RSC’s role in this process could be to act correctly in relation to the nearby perimeter, such that border cells in one hemisphere are involved in the encoding of walls in the contralateral hemifield, after which the animal makes an ipsilateral turn to avoid collision. Together this supports the idea that the MEC→RSC pathway links the encoding of space and position in the hippocampal system with the brain’s motor action systems, allowing animals to use walls as prominent landmarks to navigate the room.
The main aim of this thesis work was to elucidate the catalytic mechanism of several enzyme complexes on the basis of their three-dimensional structure. All investigated enzyme complexes occur in the anaerobic energy metabolism and have an essential function by the challenging degradation of aromatic compounds and the flavin-based electron bifurcation (FBEB)/confurcation, an energy-coupling mechanism. More specifically, I studied the phthaloyl-CoA decarboxylase of Thauera chlorobenzoica (Pcd) involved in phthalate ester decomposition, the FBEB protein complexes lactate dehydrogenase/electron-transfer flavoprotein (Ldh/EtfAB) of Acetobacterium woodii, the heterodisulfide-related subunit HdrA of the sulfur- oxidizing bacteria Hyphomicrobium denitrificans (sHdrA). In addition, I contributed to the structure determination of the caffeyl-CoA reductase- EtfAB complex of A. woodii and the naphthoyl-CoA reductase of the sulfate-respiring enrichment culture N47 (mentioned in the Appendix E and F).