C13 Estimation
Refine
Document Type
- Working Paper (7)
- Article (3)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Asset Pricing (1)
- Asset pricing (1)
- Bayesian Estimation (1)
- Bayesian VAR (1)
- CDS (1)
- COVID-19 (1)
- Conditional Forecasts (1)
- Copula (1)
- Credit (1)
- Cross-section of expected returns (1)
When estimating misspecified linear factor models for the cross-section of expected returns using GMM, the explanatory power of these models can be spuriously high when the estimated factor means are allowed to deviate substantially from the sample averages. In fact, by shifting the weights on the moment conditions, any level of cross-sectional fit can be attained. The mathematically correct global minimum of the GMM objective function can be obtained at a parameter vector that is far from the true parameters of the data-generating process. This property is not restricted to small samples, but rather holds in population. It is a feature of the GMM estimation design and applies to both strong and weak factors, as well as to all types of test assets.
The hierarchical feature regression (HFR) is a novel graph-based regularized regression estimator, which mobilizes insights from the domains of machine learning and graph theory to estimate robust parameters for a linear regression. The estimator constructs a supervised feature graph that decomposes parameters along its edges, adjusting first for common variation and successively incorporating idiosyncratic patterns into the fitting process. The graph structure has the effect of shrinking parameters towards group targets, where the extent of shrinkage is governed by a hyperparameter, and group compositions as well as shrinkage targets are determined endogenously. The method offers rich resources for the visual exploration of the latent effect structure in the data, and demonstrates good predictive accuracy and versatility when compared to a panel of commonly used regularization techniques across a range of empirical and simulated regression tasks.
Dynamics of life course family transitions in Germany: exploring patterns, process and relationships
(2023)
This paper explores dynamics of family life events in Germany using discrete time event history analysis based on SOEP data. We find that higher educational attainment, better income level, and marriage emerge as salient protective factors mitigating the risk of mortality; better education also reduces the likelihood of first marriage whereas, lower educational attainment, protracted period, and presence of children act as protective factors against divorce. Our key finding shows that disparity in mean life expectancies between individuals from low- and high-income brackets is observed to be 9 years among males and 6 years among females, thereby illustrating the mortality inequality attributed to income disparities. Our estimates show that West Germans have low risk of death, less likelihood of first marriage, and they have a high risk of divorce and remarriage compared to East Germans.
The author proposes a Differential-Independence Mixture Ensemble (DIME) sampler for the Bayesian estimation of macroeconomic models.It allows sampling from particularly challenging, high-dimensional black-box posterior distributions which may also be computationally expensive to evaluate. DIME is a “Swiss Army knife”, combining the advantages of a broad class of gradient-free global multi-start optimizers with the properties of a Monte Carlo Markov chain (MCMC). This includes fast burn-in and convergence absent any prior numerical optimization or initial guesses, good performance for multimodal distributions, a large number of chains (the “ensemble”) running in parallel, an endogenous proposal density generated from the state of the full ensemble, which respects the bounds of the prior distribution. The author shows that the number of parallel chains scales well with the number of necessary ensemble iterations.
DIME is used to estimate the medium-scale heterogeneous agent New Keynesian (“HANK”) model with liquid and illiquid assets, thereby for the first time allowing to also include the households’ preference parameters. The results mildly point towards a less accentuated role of household heterogeneity for the empirical macroeconomic dynamics.
We provide the first comprehensive analysis of option information for pricing the cross-section of stock returns by jointly examining extensive sets of firm and option characteristics. Using portfolio sorts and high-dimensional methods, we show that certain option measures have significant predictive power, even after controlling for firm characteristics, earning a Fama-French three-factor alpha in excess of 20% per annum. Our analysis further reveals that the strongest option characteristics are associated with information about asset mispricing and future tail return realizations. Our findings are consistent with models of informed trading and limits to arbitrage.
Analysing causality among oil prices and, in general, among financial and economic variables is of central relevance in applied economics studies. The recent contribution of Lu et al. (2014) proposes a novel test for causality— the DCC-MGARCH Hong test. We show that the critical values of the test statistic must be evaluated through simulations, thereby challenging the evidence in papers adopting the DCC-MGARCH Hong test. We also note that rolling Hong tests represent a more viable solution in the presence of short-lived causality periods.
We study self- and cross-excitation of shocks in the Eurozone sovereign CDS market. We adopt a multivariate setting with credit default intensities driven by mutually exciting jump processes, to capture the salient features observed in the data, in particular, the clustering of high default probabilities both in time (over days) and in space (across countries). The feedback between jump events and the intensity of these jumps is the key element of the model. We derive closed-form formulae for CDS prices, and estimate the model by matching theoretical prices to their empirical counterparts. We find evidence of self-excitation and asymmetric cross-excitation. Using impulse-response analysis, we assess the impact of shocks and a potential policy intervention not just on a single country under scrutiny but also, through the effect on cross-excitation risk which generates systemic sovereign risk, on other interconnected countries.
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields computationally tractable, consistent and asymptotic efficient estimates of all parameters. We show the asymptotic normality and derive the estimator's asymptotic covariance in dependence of the number of iteration steps. To mitigate the curse of dimensionality in high-parameterized models, we combine the procedure with a penalization approach yielding sparsity and reducing model complexity. Small sample properties of the estimator are illustrated for two time series models in a simulation study. In an empirical application, we use the proposed method to estimate the connectedness between companies by extending the approach by Diebold and Yilmaz (2014) to a high-dimensional non-Gaussian setting.
Credit boom detection methodologies (such as threshold method) lack robustness as they are based on univariate detrending analysis and resort to ratios of credit to real activity. I propose a quantitative indicator to detect atypical behavior of credit from a multivariate system - a monetary VAR. This methodology explicitly accounts for endogenous interactions between credit, asset prices and real activity and detects atypical credit expansions and contractions in the Euro Area, Japan and the U.S. robustly and timely. The analysis also proves useful in real time.
This paper evaluates the effects of job creation schemes on the participating individuals in Germany. Since previous empirical studies of these measures have been based on relatively small datasets and focussed on East Germany, this is the first study which allows to draw policy-relevant conclusions. The very informative and exhaustive dataset at hand not only justifies the application of a matching estimator but also allows to take account of threefold heterogeneity. The recently developed multiple treatment framework is used to evaluate the effects with respect to regional, individual and programme heterogeneity. The results show considerable differences with respect to these sources of heterogeneity, but the overall finding is very clear. At the end of our observation period, that is two years after the start of the programmes, participants in job creation schemes have a significantly lower success probability on the labour market in comparison to matched non-participants.