C13 Estimation
Refine
Document Type
- Working Paper (6)
- Article (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Asset Pricing (1)
- Bayesian Estimation (1)
- Bayesian VAR (1)
- CDS (1)
- COVID-19 (1)
- Conditional Forecasts (1)
- Copula (1)
- Credit (1)
- DCC-GARCH (1)
- Evaluation (1)
The author proposes a Differential-Independence Mixture Ensemble (DIME) sampler for the Bayesian estimation of macroeconomic models.It allows sampling from particularly challenging, high-dimensional black-box posterior distributions which may also be computationally expensive to evaluate. DIME is a “Swiss Army knife”, combining the advantages of a broad class of gradient-free global multi-start optimizers with the properties of a Monte Carlo Markov chain (MCMC). This includes fast burn-in and convergence absent any prior numerical optimization or initial guesses, good performance for multimodal distributions, a large number of chains (the “ensemble”) running in parallel, an endogenous proposal density generated from the state of the full ensemble, which respects the bounds of the prior distribution. The author shows that the number of parallel chains scales well with the number of necessary ensemble iterations.
DIME is used to estimate the medium-scale heterogeneous agent New Keynesian (“HANK”) model with liquid and illiquid assets, thereby for the first time allowing to also include the households’ preference parameters. The results mildly point towards a less accentuated role of household heterogeneity for the empirical macroeconomic dynamics.
We provide the first comprehensive analysis of option information for pricing the cross-section of stock returns by jointly examining extensive sets of firm and option characteristics. Using portfolio sorts and high-dimensional methods, we show that certain option measures have significant predictive power, even after controlling for firm characteristics, earning a Fama-French three-factor alpha in excess of 20% per annum. Our analysis further reveals that the strongest option characteristics are associated with information about asset mispricing and future tail return realizations. Our findings are consistent with models of informed trading and limits to arbitrage.
Analysing causality among oil prices and, in general, among financial and economic variables is of central relevance in applied economics studies. The recent contribution of Lu et al. (2014) proposes a novel test for causality— the DCC-MGARCH Hong test. We show that the critical values of the test statistic must be evaluated through simulations, thereby challenging the evidence in papers adopting the DCC-MGARCH Hong test. We also note that rolling Hong tests represent a more viable solution in the presence of short-lived causality periods.
We study self- and cross-excitation of shocks in the Eurozone sovereign CDS market. We adopt a multivariate setting with credit default intensities driven by mutually exciting jump processes, to capture the salient features observed in the data, in particular, the clustering of high default probabilities both in time (over days) and in space (across countries). The feedback between jump events and the intensity of these jumps is the key element of the model. We derive closed-form formulae for CDS prices, and estimate the model by matching theoretical prices to their empirical counterparts. We find evidence of self-excitation and asymmetric cross-excitation. Using impulse-response analysis, we assess the impact of shocks and a potential policy intervention not just on a single country under scrutiny but also, through the effect on cross-excitation risk which generates systemic sovereign risk, on other interconnected countries.
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields computationally tractable, consistent and asymptotic efficient estimates of all parameters. We show the asymptotic normality and derive the estimator's asymptotic covariance in dependence of the number of iteration steps. To mitigate the curse of dimensionality in high-parameterized models, we combine the procedure with a penalization approach yielding sparsity and reducing model complexity. Small sample properties of the estimator are illustrated for two time series models in a simulation study. In an empirical application, we use the proposed method to estimate the connectedness between companies by extending the approach by Diebold and Yilmaz (2014) to a high-dimensional non-Gaussian setting.
Credit boom detection methodologies (such as threshold method) lack robustness as they are based on univariate detrending analysis and resort to ratios of credit to real activity. I propose a quantitative indicator to detect atypical behavior of credit from a multivariate system - a monetary VAR. This methodology explicitly accounts for endogenous interactions between credit, asset prices and real activity and detects atypical credit expansions and contractions in the Euro Area, Japan and the U.S. robustly and timely. The analysis also proves useful in real time.
This paper evaluates the effects of job creation schemes on the participating individuals in Germany. Since previous empirical studies of these measures have been based on relatively small datasets and focussed on East Germany, this is the first study which allows to draw policy-relevant conclusions. The very informative and exhaustive dataset at hand not only justifies the application of a matching estimator but also allows to take account of threefold heterogeneity. The recently developed multiple treatment framework is used to evaluate the effects with respect to regional, individual and programme heterogeneity. The results show considerable differences with respect to these sources of heterogeneity, but the overall finding is very clear. At the end of our observation period, that is two years after the start of the programmes, participants in job creation schemes have a significantly lower success probability on the labour market in comparison to matched non-participants.