The 10 most recently published documents
Rethinking smartness
(2023)
Like many metropolitan centers around the world, Berlin aspires to be a "smart city." Making a city smart usually involves constructing a dense net of sensors, often embedded in and around more traditional infrastructures throughout the urban environment, such as transportation systems, electrical grids, and water systems. The process also requires the city to solicit the distributed input of its inhabitants through active technological means, such as smart phone apps. Finally, the city employs high-end computing and learning algorithms to analyze the resulting data, with the goal of optimizing urban technical, social, and political processes. Yet, perhaps counterintuitively, a smart city is not synonymous with a utopian - or even a specific - form of the city, which would then remain stable for the foreseeable future. In this sense, the smart city is quite unlike utopian cities as they were imagined in the past, when it was presumed that a specific form - such as Le Corbusier's "Radiant City" or the concentric circles of Ebenezer Howard's garden cities - would enable a specific goal, such as integration of humans into natural processes, or economic growth, or an increase in collective happiness, or democratic political participation. Rather, a city is "smart" when it achieves the capacity to adjust to any new and unexpected threats and possibilities that may emerge from the city's ecological, political, social, and economic environments (a capacity that is generally referred to in planning documents with the term "resilience"). In short, a smart city is a site of perpetual learning, and a city is smart when it achieves the capacity to engage in perpetual learning.
Cysteine cross-linking in native membranes establishes the transmembrane architecture of Ire1
(2021)
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
A webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information. Although it was clear from the presentations and Q&A sessions that we continue to make progress in the field of CRDSs and the utility/success of PBBM, there is also a need to continue the momentum and dialogue between the industry and regulators. Five key areas were identified which require further discussion and harmonisation.
In this paper, we introduce an approach for future frames prediction based on a single input image. Our method is able to generate an entire video sequence based on the information contained in the input frame. We adopt an autoregressive approach in our generation process, i.e., the output from each time step is fed as the input to the next step. Unlike other video prediction methods that use “one shot” generation, our method is able to preserve much more details from the input image, while also capturing the critical pixel-level changes between the frames. We overcome the problem of generation quality degradation by introducing a “complementary mask” module in our architecture, and we show that this allows the model to only focus on the generation of the pixels that need to be changed, and to reuse those that should remain static from its previous frame. We empirically validate our methods against various video prediction models on the UT Dallas Dataset, and show that our approach is able to generate high quality realistic video sequences from one static input image. In addition, we also validate the robustness of our method by testing a pre-trained model on the unseen ADFES facial expression dataset. We also provide qualitative results of our model tested on a human action dataset: The Weizmann Action database.
Tasks are a key resource in the process of teaching and learning mathematics, which is why task design continues to be one of the main research issues in mathematics education. Different settings can influence the principles underlying the formulation of tasks, and so does the outdoor context. Specifically, a math trail can be a privileged context, known to promote positive attitudes and additional engagement for the learning of mathematics, confronting students with a sequence of real-life tasks, related to a particular mathematical theme. Recently, mobile devices and apps, i.e., MathCityMap, have been recognized as an important resource to facilitate the extension of the classroom to the outdoors. The study reported in this paper intends to identify the principles of design for mobile theme-based math trails (TBT) that result in rich learning experiences in early algebraic thinking. A designed-based research is used, through a qualitative approach, to develop and refine design principles for TBT about Sequences and Patterns. The iterative approach is described by cycles with the intervention of the researchers, pre-service and in-service teachers and students of the targeted school levels. The results are discussed taking into account previous research and data collected along the cycles, conducing to the development of general design principles for TBT tasks.
In the framework of the PNRA (Italian National Antarctic Research Program) project CARBONANT focusing on biogenic carbonates and held in January–February 2002, several Ross Sea banks were sampled to obtain samples of biogenic carbonates. In the Mawson Bank, species belonging to the isopod genus Chaetarcturus Brandt, 1990 were recorded, including a specimen that did not match any described species. In this paper we describe Chaetarcturus cervicornis sp. n., which is characterized by supraocular spines and two pairs of tubercle-like protrusions on the cephalothorax. The new species is very similar to C. bovinus (Brandt & Wägele, 1988) and C. adareanus (Hodgson, 1902), but has a clearly different spine pattern. The study of the species of the genus Chaetarcturus in the Ross Sea contributes to increase our knowledge on the diversity of the Antarcturidae in the Southern Ocean. Ross Sea banks seem to hold an interesting and not-well-known fauna, deserving attention in future research.
Since 2020, the COVID-19 pandemic had an impact on education worldwide. There is increased discussion of possible negative effects on students’ learning outcomes and the need for targeted support. We examined fourth graders’ reading achievement based on a school panel study, representative on the student level, with N = 111 elementary schools in Germany (total: N = 4,290 students, age: 9–10 years). The students were tested with the Progress in International Reading Literacy Study instruments in 2016 and 2021. The analysis focused on (1) total average differences in reading achievement between 2016 and 2021, (2) average differences controlling for student composition, and (3) changes in achievement gaps between student subgroups (i.e., immigration background, socio-cultural capital, and gender). The methodological approach met international standards for the analysis of large-scale assessments (i.e., multiple multi-level imputation, plausible values, and clustered mixed-effect regression). The results showed a substantial decline in mean reading achievement. The decline corresponds to one-third of a year of learning, even after controlling for changes in student composition. We found no statistically significant changes of achievement gaps between student subgroups, despite numerical tendencies toward a widening of achievement gaps between students with and without immigration background. It is likely that this sharp achievement decline was related to the COVID-19 pandemic. The findings are discussed in terms of further research needs, practical implications for educating current student cohorts, and educational policy decisions regarding actions in crises such as the COVID-19 pandemic.
One of important consequences of Hagedorn statistical bootstrap model is the prediction of limiting temperature Tcrit for hadron systems colloquially known as Hagedorn temperature. According to Hagedorn, this effect should be observed in hadron spectra obtained in infinite equilibrated nuclear matter rather than in relativistic heavy-ion collisions. We present results of microscopic model calculations for the infinite nuclear matter, simulated by a box with periodic boundary conditions. The limiting temperature indeed appears in the model calculations. Its origin is traced to strings and many-body decays of resonances.