Occurrence and sources of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) in the aquatic environment

The aim of the present study was to identify the sources of 2,4,7,9-tetramethyl-5-decyne-4,7-
diol (TMDD) into the aquatic environment and to investigate its occurrence in rivers and
wastewater treatment plants (WWTPs)
The aim of the present study was to identify the sources of 2,4,7,9-tetramethyl-5-decyne-4,7-
diol (TMDD) into the aquatic environment and to investigate its occurrence in rivers and
wastewater treatment plants (WWTPs). Therefore, TMDD was analyzed in 441 wastewater
samples from influents and effluents of 27 municipal WWTPs, in 6 sludge samples, in 52
wastewater samples from 3 sewage systems of municipal WWTPs, in 489 surface samples
from 24 rivers, in 9 wastewater samples of 3 paper-recycling industries and in 65 groundwater
samples. TMDD was also analyzed in household paper products, in 23 samples of toilet
papers, in 5 types of paper towels and in 12 types of paper tissues. The samples were collected
between 2007 and 2011. The water samples were extracted with solid phase extraction (SPE)
and the household paper samples with Soxhlet extraction. Gas chromatography-mass
spectrometry (GC-MS) was used for quantification purposes.
Between November 2007 and January 2008, TMDD was detected in the river Rhine at Worms
with permanent high concentrations (up to 1330 ng/L). The results showed that TMDD is
uniformly distributed across the river at Worms. An increase of the mean TMDD
concentration from approximately 500 ng/L to 1000 ng/L was registered in January 2008. Due
to the minor fluctuations of the TMDD concentration during the sampling period it is
expected that the input of TMDD into the river is continuous. Therefore, TMDD might rather
originate from effluents of municipal WWTPs than from temporal sources. The mean TMDD
load based on the analysis of 147 water samples collected in the River Rhine was 62.8 kg/d
which is equivalent to 23 t/a suggesting that TMDD must be used and/or produced in high
quantities in order to be found in those high concentrations. To determine if TMDD is
discharged by effluents of municipal WWTPs into the rivers, 24 hours influent and effluent
samples of four municipal WWTPs in the Frankfurt/Rhine-Main metropolitan region were
collected during November 2008 and February 2010 and analyzed for TMDD. The TMDD
influent concentrations varied between 134 ng/L and 5846 ng/L and the effluent
concentrations between <LOQ (limit of quantitation) and 3539 ng/L. The TMDD elimination
rates in the four WWTPs varied between 33% and 68%. The results showed that effluents of
municipal WWTPs are an important source of TMDD in the aquatic environment because
TMDD is not completely removed from the sewage during the wastewater treatment. Weekly
and daily variations of the TMDD concentration in the influents of two municipal WWTPs
indicated that both private households and indirect industrial dischargers contribute to the
introduction of TMDD into the municipal sewage systems. A more detailed study of the
TMDD elimination rate in the different wastewater treatment stages was carried out in the
WWTP Niederrad/Griesheim in Frankfurt am Main. The results showed that the removal of
TMDD is mainly carried out during the aerobic biological treatments, where the elimination
rate was 46%. In contrast, during the anoxic treatment the removal efficiency was only 1.4%
and during the mechanical treatment the elimination rate was 19%.
To determine the sources of TMDD in the sewage, household paper products (paper tissues,
toilet papers and paper towels) were analyzed for TMDD using Soxhlet extraction. TMDD
was detected in 83% of the samples (n=40). The highest mean TMDD concentrations were
found in recycled toilet paper (0.20 μg/g) and in paper towels (0.11 μg/g). In paper tissues and
non-recycled toilet paper the mean TMDD concentrations were lower 0.080 μg/g and
0.025 μg/g respectively. According to these results the high TMDD influent concentrations
found previously in municipal WWTPs (mean 1.20 μg/L) cannot be explained due to
migration of TMDD from the household paper products into the sewage. Thus indirect
industrial dischargers are the cause of the high influent TMDD concentrations. Effluents of
municipal WWTPs with different indirect industrial dischargers (textile-, metal processing-,
food processing-, electroplating-, paper-recycling- and printing ink factories) were analyzed.
The highest mean TMDD concentrations were found in the effluents of municipal WWTPs
that have paper-recycling (71.3 μg/L) and printing ink factories (138 μg/L) as indirect
industrial dischargers. These results were confirmed by analyzing process wastewater of three
paper-recycling factories located in Germany. High TMDD concentrations were detected and
fluctuated between 1.83 μg/L and 113 μg/L. TMDD was also analyzed in the wastewater of a
non-recycling-paper factory but its concentration was much lower (0.066 μg/L) indicating that
TMDD is introduced into the processing water during the papermaking process due to the use
of waste paper. Analyses of wastewater samples from different parts of the sewage pipes of a
municipal WWTP in Hesse, which receives the wastewater from a printing ink factory, were
carried out. The TMDD concentration in the wastewater sample from the sewage pipe of the
printing ink factory was much higher (3,300 μg/L) than the TMDD concentration detected in
the other wastewater samples from the sewage system (0.030 μg/L – 0.89 g/L). These results
confirm the printing ink production as one of the principal sources of TMDD in the sewage.
Analysis of surface water samples of the River Modau downstream from the effluent of the
WWTP Nieder-Ramstadt showed TMDD concentrations of up to 28.0 μg/L. These high
TMDD concentrations might be caused by the indirect wastewater discharges of a paint
factory connected to the municipal sewage system. These results indicate that TMDD is
introduced into the municipal WWTPs principally by indirect industrial dischargers and they
are mainly paint and printing ink factories. The paper-recycling factories also represent an
important source of TMDD in municipal WWTPs but indirectly. According to statements
given by the representatives of two paper recycling factories neither TMDD or any other
TMDD containing product is used or added during the papermaking process. Therefore,
TMDD is washed out from the printing inks of the coloured waste paper and concentrated in
the process wastewater in the closed water circuits of paper-recycling factories reaching rivers
and municipal WWTPs.
The occurrence and distribution of TMDD in surface waters in Germany was also studied.
The results showed that TMDD is widely distributed across different rivers systems in the
federal states of Hesse, North-Rhine-Westphalia, Bavaria, Baden-Wuerttemberg and
Rhineland-Palatinate. In Hesse, TMDD was detected in the some of main rivers with mean
concentrations of 812 ng/L (Schwarzbach, Hessian Ried), 374 ng/L (Kinzig), 393 ng/L (Main,
at Frankfurt), 539 ng/L (Werra), 326 ng/L (Fulda), 151 ng/L (Emsbach) and 161 ng/L
(Nidda). In small rivers (creeks) the mean TMDD concentrations varied between <LOQ
(Diemel, Urselbach) and 1890 ng/L (Darmbach). The results showed that the TMDD
concentrations in creeks are highly influenced by both effluents of WWTPs and by the
distance between the sampling point and the nearest WWTP. Surface samples from sampling
locations downstream from WWTPs dischargers showed higher TMDD concentrations (mean
518 ng/L) than sampling locations upstream from WWTPs dischargers (mean 35.1 ng/L).
The behavior of TMDD during bank filtration was investigated at two locations, at a water
utility company at the Lower River Rhine (urban area) and at the Oderbruch polder (rural
area). The results indicated that TMDD is removed from the surface water by bank filtration
at both sampling locations. The removal process is probably carried out in the first meters of
the aquifer (hyporheic zone) by biodegradation processes, since TMDD does not tend to be
absorbed by sediments and it was not found in the groundwater of monitoring wells. In
groundwater samples from the Hessian Ried (n=23) TMDD was found only in five samples
and the highest TMDD concentration was 135 ng/L. According to these results, TMDD does
not represent a concern for drinking water in Germany, since it does not reach the
groundwater with high concentrations and it has a low toxicity potential.
The input of TMDD into the North Sea was estimated to be 60.7 t/a by considering the mean
transported loads of TMDD by the River Rhine at Wesel (58.3 t/a) and Meuse in the
Netherlands (2.40 t/a). The estimated discharge of TMDD by German municipal WWTPs
(8.19 t/a) and paper-recycling factories (9.24 t/a) into rivers seems to be too low considering
that the mean TMDD load in the River Rhine downstream from Wesel is 58.3 t/a. However,
due to the high density of population and industries at the Lower Rhine it is expected that
more relevant sources of TMDD are located along the Rhine River increasing the transported
According to the results of this PhD project TMDD is a non-ionic surfactant contained in
products, which are applied on surfaces (printing inks and paints) and has the potential to
reach the aquatic environment. Therefore, TMDD should fulfill the requirement of a
biodegradability of 80% established by the “Law on the Environmental Impact of Detergents
and Cleaning Products” in Germany. However, due to the partial elimination rates of TMDD
obtained in municipal WWTPs (between 33% and 68%) and to the absence of information
about the execution of the biodegradation test on TMDD, it is unknown if TMDD is in
accordance with this law. Otherwise, its use as surfactant in such products is questionable.
show moreshow less

Download full text files

  • application/pdf Occurrence_and_Sources.pdf (882 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Author:Arlen Guedez Orozco
Referee:Wilhelm Püttmann, Jörg Oehlmann, Jan Schwarzbauer, Ruprecht Schleyer
Document Type:Doctoral Thesis
Date of Publication (online):2012/03/07
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/02/02
Release Date:2012/03/07
Tag:bank filtration; degradation; indirect dischargers; paper recycling; wastewater treatment
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS PPN:312775563
Dewey Decimal Classification:550 Geowissenschaften
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $