Characterizing the hologenome of Lasallia pustulata and tracing genomic footprints of lichenization

The lichen symbiosis – consisting of fungal mycobionts and photoautotroph photobionts (green algae or cyanobacteria) – is globally successful. It covers an estimated 6% of the global surface with habitats ranging from de
The lichen symbiosis – consisting of fungal mycobionts and photoautotroph photobionts (green algae or cyanobacteria) – is globally successful. It covers an estimated 6% of the global surface with habitats ranging from deserts to the arctic. This success is reflected in the diversity of the mycobionts, with around 21% of all fungal species participating in lichen symbioses that can be facultative or obligate. Lichenization is furthermore evolutionary old, with fossil evidence for lichens reaching back 415 million years. For an individual fungal lineage, the Lecanoromycetes, the lichenization happened around 300 million years ago. This longstanding symbiotic relationship and the diversity of observed symbiotic dependency make them promising models to study the genomic consequences that follow the establishment of symbioses. Despite this, only little is known about the genomic effects of lichenization and extreme symbiotic dependency. To fill this gap we sequenced the hologenome of the lichen Lasallia pustulata, where the mycobiont could so far not been cultivated, suggesting that it might be more dependent on its symbionts. 
As the poor culturability of lichen symbionts renders their genomes inaccessible to standard sequencing practices, we evaluated the extent to which different metagenome sequencing- and de novo assembly-strategies can be used to sequence and reconstruct the genomes of the individual symbionts. We find that the abundances of individual genomes present in the L. pustulata hologenome vary substantially, with the mycobiont being most abundant. Using in silico generated data sets and real Illumina sequencing data for L. pustulata we observe that the skewed abundances prevent a contiguous assembly of the underrepresented genomes when using only short-read sequencing. We conclude that short-read sequencing can offer first insights into lichen hologenomes. The fragmentation of the reconstructions hinders downstream analyses into the genomic consequences of lichenization though, as these are focused on identifying the gain and loss of genes. 
We thus demonstrate a hybrid genome assembly strategy that is based on both short- and long-read sequencing. We show that this strategy is capable of creating highly contiguous genome reconstructions, not only for the L. pustulata mycobiont but also its photobiont Trebouxia sp., along with substantial amounts of the bacterial microbiome. A subsequent analysis of the microbiome of L. pustulata – performed over nine different samples collected in Germany and Italy – showed a stable taxonomic composition across the geographic range. We find that Acidobacteriaceae, which are known to thrive in nutrient poor habitats, are the dominant taxa. These would make them well adapted for the co-habitation with L. pustulata, which largely grows on rocks. Whether the Acidobacteriaceae are functionally involved in the lichen symbiosis is unclear so far. 
As further comparative genomic studies rely on comprehensive genome annotations, we evaluate the completeness and fidelity of the gene annotations for the mycobiont L. pustulata as well as four further Lecanoromycetes. This reveals that un- and mis-annotated genes impact all evaluated genomes, with artificially joined genes and unannotated genes having the largest impact. In addition to these factors we find that the sequence composition – especially G/C-rich inverted repeats – lead to sequencing errors that interfere with the gene prediction. We minimize the effects of these artifacts through a rigorous curation. 
Given the extremely sparse taxon sampling of available green alga genomes, we focus our search for the genomic footprints of lichenization on the mycobionts. We compare the genomes of the Lecanoromycetes to their closest relatives, the Eurotiomycetes and Dothideomycetes. This reveals that the last common ancestor of the Lecanoromycetes has lost around 10% of its genes after they split from the non-lichenized ancestor they share with the Eurotiomycetes. These losses are furthermore enriched, showing an excessive loss of genes involved with the degradation of polysaccharides. The loss of these genes fits a change from an ancestral saprotrophic lifestyle that depends on degrading complex plant matter, to the symbiotic lifestyle that relies on simpler nutrients provided by the photobionts. While the last common ancestor of the Lecanoromycetes additionally gained around 400 genes these could so far not be further characterized due to a lack of functionally annotated reference data. 
As the mycobiont L. pustulata could so far not been grown in axenic culture, we initially expected to find an extensive genomic remodeling compared to the other mycobionts that easily grow in culture. We do not find evidence for this. Analyzing both the contraction of gene families and the loss of genes, we observe that L. pustulata and Umbilicaria muehlenbergii – its close relative that is easily grown in culture – share most of these. Furthermore, L. pustulata does not show an excessive loss of evolutionary old and well-conserved genes. These effects are mirrored on the functional level, as neither gene family contractions nor gene losses show a functional enrichment. This is partially due to the lack of functional reference data, analogous to the genes gained in the Lecanoromycetes, rendering their characterization hard. Thus, further studies on the genomic consequences of lichenization and differences in symbiotic dependence will have to be conducted, including larger taxon sets. This will be even more important for the photobionts, as the Chlorophyta are even more sparsely sampled today, hindering an effective functional and evolutionary study.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Bastian Greshake Tzovaras
URN:urn:nbn:de:hebis:30:3-457013
Place of publication:Frankfurt am Main
Referee:Ingo Ebersberger, Markus Pfenninger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/02/12
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/06
Release Date:2018/02/22
Pagenumber:vii, XII, 228
HeBIS PPN:426609867
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $