Derivation of mouse extraembryonic endoderm stem cell lines, and exclusive transmission of the embryonic stem cell-derived genome through the mouse germline

Die Analyse früher Entwicklungsstadien von Säugetierembryonen und daraus gewonnener Stammzelllinien kann entscheidende Erkenntnisse im Bereich der Reproduktionsbiologie und der regenerativen Medizin hervorbringen. Dabei 
Die Analyse früher Entwicklungsstadien von Säugetierembryonen und daraus gewonnener Stammzelllinien kann entscheidende Erkenntnisse im Bereich der Reproduktionsbiologie und der regenerativen Medizin hervorbringen. Dabei spielt die Maus, als geeignetes Modellsystem für die Übertragbarkeit auf den Menschen eine wichtige Rolle, in erster Linie weil die Blastozysten der Maus verglichen mit menschliche Blastozysten eine morphologische Ähnlichkeit aufweisen. Humane embryonale Stammzelllinien haben großes Potential für die Anwendung in der regenerativen Medizin und vergleichend dazu wurde Gen-Targeting in embryonalen Stammzellen verwendet, um tausende neuer Mausstämme zu generieren. Die Gewinnung embryonaler Stammzellen erfolgt im Blastozystenstadium, diese können dann nach Injektion in eine andere Blastozyste zur Entwicklung aller Gewebearten, einschließlich der Keimbahngewebe, beitragen (Martin, 1981; Evans and Kaufman 1981). 
Ursache einer Fehlgeburt können vor allem Defekte in der Entwicklung des Trophoblasten und des primitive Entoderms (PrE) sein, dabei sind ca. 5 % der Paare betroffen die versuchen ein Kind zu bekommen (Stephenson and Kutteh, 2007). Eine Untersuchung dieser Zelllinien im Mausmodell könnte weitere Erkenntnisse für die Gründe einer Fehlentwicklung liefern. Trophoblasten Stammzelllinien können aus den Blastozysten der Maus und dem extraembryonalen Ektoderm von bereits implantieren Embryonen gewonnen werden (Tanaka et al., 1998). Diese Zelllinien geben Aufschluss über die Entwicklung des Trophoblasten, fördern die Entwicklung der Plazenta und sind gleichzeitig ein gutes Modellsystem um die Implantation des Embryos im Uterus näher zu untersuchen. Zellen des primitive Entoderms (PrE) beeinflussen das im Dottersack vorhandene extraembryonale Entoderm, welches dort als “frühe Plazenta” fungiert und für die Versorgung des Embryos mit Nährstoffen zuständig ist (Cross et al., 1994). Des Weiteren besitzt das Entoderm einen induktiven Einfluss auf die Bildung von anterioren Strukturen und die Bildung von Endothelzellen sowie Blutinseln (Byrd et al., 2002).
Extraembryonale Endodermstammzellen (XEN Zellen) können aus Blastozysten gewonnen und in embryonale Stammzellen (ES-Zellen) umgewandelt werden (Fujikura et al., 2002; Kunath et al., 2005). Es war jedoch nicht bekannt, ob XEN-Zellen auch aus Postimplantations-Embryonen gewonnen werden können. XEN-Zellen tragen in vivo zur Entwicklung des Darmendoderms bei (Kwon et al., 2008; Viotti et al., 2014) und könnten als alternative, selbsterneuernde Quelle für extraembryonale Endoderm-abgeleitete Zellen dienen, die zur Herstellung von Geweben für die regenerative Medizin verwendet werden könnten (Niakan et al., 2013).
In der Embryogenese der Maus zeigt sich an Tag E3.0 eine kompakte Morula die sich allmählich in das Trophektoderm (TE) differenziert, welches wiederum den Embryonalknoten (“innere Zellmasse”) umschließt (Johnson and Ziomek, 1981). Ein wichtiger Schritt im Rahmen der Entwicklung findet an Tag E3.5 statt, in diesem Zeitraum gehen aus dem Embryonalknoten der pluripotente Epiblast und das primitive Entoderm hervor. Im späten Blastozystenstadium an Tag E4.5 liegt das PrE als Zellschicht entlang der Oberfläche der Blastocoel-Höhle. Aus dem Epiblast entwickeln sich im weiteren Verlauf der Embryo, das Amnion und das extraembryonale Mesoderm des Dottersacks. Die Zellen des Trophektoderm führen zur Entwicklung der Plazenta. Das PrE differenziert sich im Zuge der Weiterentwicklung in das viszerale Entoderm (VE) und das parietale Entoderm (PE) des Dottersacks (Chazaud et al., 2006; Gardner and Rossant, 1979; Plusa et al., 2008). VE umgibt den Epiblast und extraembryonisches Ektoderm (ExE). PE-Zellen wandern entlang der inneren Oberfläche von TE und sezernieren zusammen mit Trophoblasten-Riesenzellen Basalmembranproteine, um die Reichert-Membran zu bilden (Hogan et al., 1980). Die Reichert-Membran besteht aus Basalmembranproteinen, einschließlich Kollagenen und Lamininen, die zwischen den parietalen Endoderm- und Trophoblastzellen liegen. Diese Membran wirkt als ein Filter, der dem Embryo den Zugang zu Nährstoffen ermöglicht, während er eine Barriere zu den Zellen der Mutter bildet (Gardner, 1983).
...
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Jiangwei Lin
URN:urn:nbn:de:hebis:30:3-491129
Place of publication:Frankfurt am Main
Referee:Amparo Acker-Palmer, Peter Mombaerts
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/02/14
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/12/13
Release Date:2019/02/14
Pagenumber:117
Last Page:103
HeBIS PPN:445330120
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $