Große Stammbäume

Sei T ein kritischer oder subkritischer Galton-Watson Stammbaum (GW-Baum) mit einer Kinderzahlverteilung endlicher oder unendlicher Varianz. Wir sind an der Struktur von T , bedingt darauf, dass T "groß" ist, interessier
Sei T ein kritischer oder subkritischer Galton-Watson Stammbaum (GW-Baum) mit einer Kinderzahlverteilung endlicher oder unendlicher Varianz. Wir sind an der Struktur von T , bedingt darauf, dass T "groß" ist, interessiert. Der klassische sowie naheliegende Zugang ist, T auf eine große Gesamtgröße oder eine große Höhe zu bedingen. In dieser Arbeit werden drei, zum GW-Baum eng verwandte Typen von zufälligen Stammbäumen vorgestellt, deren Analyse aufschlussreiche Einsichten über große GW-Stammbäume liefert. Zur Untersuchung dieser auf große Gesamtgröße bedingten Stammbäume schlagen wir eine Familie von zufälligen, größenverzerrten Bäumen vor, deren auf Größe bedingte Verteilung mit der des, auf gegebener Größe bedingten, Baumes T übereinstimmt. Diese zufälligen Stammbäume besitzen eine einfache probabilistische Struktur, wenn man sie entlang der Ahnenlinien von rein zufällig gezogenen Knoten zerlegt. Die Verwandschaftsstruktur des von den gezogenen Knoten und der Wurzel aufgespannten Teilbaumes hängt im wesentlichen von dem asymptotischen Verhalten der Kinderzahlverteilung ab. Während bei endlicher Varianz diese Teilbäume asymptotisch binär sind, können bei unendlicher Varianz im Limes auch andere Formen auftreten. Wir zeigen, dass diese Teilbäume GW-Bäume bedingt auf ihre Gesamtblätterzahl sind. Mit Hilfe der Zerlegung entlang der Ahnenlinien erhalten wir zudem einen Grenzwertsatz für die reskalierte Gesamtgröße des Baumes mit einer Gamma-Verteilung als Limes. Die Analyse großer Bäume führen wir unter dem Aspekt des Größenverzerrens fort, indem wir eine weitere Familie zufälliger Bäume vorschlagen. Diese erhalten wir durch Größenverzerrung in der n-ten Generationsgröße. Wir werden sehen, dass der dadurch gewonnene zufällige Stammbaum eine ähnliche probabilistische Struktur wie der in der Gesamtgröße größenverzerrte Baum besitzt. Hier beweisen wir mit einfachen Überlegungen Aussagen über die Generation des jüngsten gemeinsamen Vorfahren (MRCA) von uniform aus Generation n gezogenen Knoten, sowie die Struktur des von diesen Knoten aufgespannten Skeletts. Schließlich betrachten wir die in [15] vorgestellte probabilistische Zerlegung des auf Mindesthöhe n bedingten GW-Baumes. Damit werden wir klassische Sätze über die Höhe des MRCA und die Grenzverteilung der reskalierten n-ten Generationsgröße für den Fall einer Kinderzahlverteilung mit unendlicher Varianz auf alternativem und anschaulichem Weg beweisen. Zudem erhalten wir eine Grenzverteilung für die Anzahl der Kinder des MRCA.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Lars Kauffmann
URN:urn:nbn:de:hebis:30-0000003191
Referee:G.; Prof. Dr. Kersting
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/11/18
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/09/19
Release Date:2003/11/18
HeBIS PPN:11516460X
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $