• search hit 1 of 1
Back to Result List

Phylogeny and species delimitation of himalopsyche (trichoptera, rhyacophilidae)

  • Freshwater is one of the most fundamental resources for life and is the habitat for a wide diversity of species. One of the most diverse aquatic insect taxa is Trichoptera Kirby, 1813, caddisflies. These semi-aquatic insects have aquatic larvae and terrestrial adults and are found all around the globe in freshwater habitats. Water is also one of the most important natural resources for the human population, but alarmingly, freshwaters are among the most threatened natural habitats. Thus, the monitoring and preservation of the quality of freshwater habitats should have a high priority. In order to track changes in the biota a baseline reference is necessary, but freshwater biodiversity is under-studied in many parts of the Earth such as the biodiversity hotspots of the Himalaya and the Hengduan Mountains. This thesis treats the trichopteran genus Himalopsyche Banks, 1940 (Rhyacophilidae) which has its diversity center in the Himalayas and the Hengduan Mountains. Himalopsyche larvae are large and conspicuous and only occur in clean, unpolluted streams. This makes Himalopsyche potentially suited as indicator organisms for freshwater quality monitoring, but taxonomic knowledge is yet insufficient. Based on samples from a field survey in the Hengduan Mountains targeting both larvae and adults I uncovered three new Himalopsyche species which are described in this thesis (Chapter II), and with the aid of molecular data I associated larvae of Himalopsyche to adult species (Chapter I). The molecular association enabled the first comparative morphological study of Himalopsyche species in the larval stage, and the morphological study in Chapter II revealed that there are four distinct larval types of Himalopsyche. However, no diagnostic characters to identify Himalopsyche larvae to species level were found. To understand Himalopsyche larval morphology from an evolutionary perspective, I reconstructed the first molecular phylogeny of the genus (Chapter III). This demonstrated that each larval type corresponds to a deep phylogenetic split, indicating that larval types evolved early in Himalopsyche evolution and remained constant since. Based on the phylogenetic results as well as larval and adult morphology, I re-defined five species groups of Himalopsyche: H. kuldschensis Group, H. lepcha Group, H. navasi Group, H. phryganea Group, and H. tibetana Group. The species groups differ with respect to their diversity centers. The monotypic H. lepcha Group resides in the Himalayas, and the monotypic H. phryganea Group inhabits Western Nearctic. The H. kuldschensis and H. tibetana Groups are geographically overlapping with distributions in the Himalayas, but the distribution of H. kuldschensis Group stretches more to the west to include the Tian Shan, and the H. tibetana Group is more concentrated around the eastern Himalayas and the Hengduan Mountains. The H. navasi Group has a more eastern distribution than most Himalopsyche including isolated areas such as Japan and Indonesia. The earliest split in Himalopsyche divides the H. navasi Group from remaining Himalopsyche, suggesting a more eastern area of origin of Himalopsyche than its current diversity center, with subsequent radiations in the Himalayas and Hengduan Mountains. In addition to the three chapters, in this thesis I discuss further aspects of Himalopsyche biology including genital evolution, species complexes, and Himalopsyche ecology.

Download full text files

Export metadata

Metadaten
Author:Anna Emilia Hjalmarsson
URN:urn:nbn:de:hebis:30:3-576254
Place of publication:Frankfurt am Main
Referee:Steffen U. PaulsORCiDGND, Axel JankeORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/01/06
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/09/12
Release Date:2021/01/14
Tag:Entomology; Freshwater; Systematics; Trichoptera
Page Number:178
HeBIS-PPN:474637085
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht