• search hit 2 of 16
Back to Result List

Long-term observation of arabidopsis thaliana root growth under close-to-natural conditions using light sheet-based fluorescence microscopy

  • In the interest of understanding the development of a multicellular organism, subcellular events must be seen in the context of the entire three-dimensional tissue. In addition, events that occur within a short period of time can be of great importance for the relatively long developmental process of the organ. Thus, it is required to capture subcellular events in a larger spatio-temporal scale context, which has been up to now a technical challenge. In developmental biology, light microscopy has always been an important tool. The dilemma of light microscopy, in particular fluorescence microscopy, is that molecules receive high light intensities that might change the conformation of molecules, which can have signaling or toxic effects. In Light Sheet-based Fluorescence Microscopy (LSFM), the energy required for a single recording is reduced by several orders of magnitude compared to other fluorescence microscopy techniques. During the last ten years, LSFM has emerged as a preferred tool to capture all cells during embryogenesis of the zebrafish Danio rerio, the fruit fly Drosophila melanogaster or recently the red flour beetle Tribolium castaneum for a period of several days. The motivation of this work was to gain new insights in developmental related processes of plant organs. The aim of this work was to establish a protocol for imaging plant growth over a long period of time using LSFM and perform comprehensive analyses at the cellular level. Plants have to cope with a variety of environmental conditions, therefore the conditions inside the microscope chamber had to be brought under control. The sample preparation methods and the standardized conditions at a physiological level allowed the study of gravity response, day-night rhythms, organ shape development as well as the intracellular dynamic events of the cytoskeleton and endosomal compartments in an unprecedented manner. Several of these projects were successfully published in collaborations with Prof. Jozef Šamaj (Palacký University Olomouc, Czech Republic), Prof. Niko Geldner (University of Lausanne, Switzerland), Prof. Malcom Bennett (University of Nottingham, UK) and Dr. Jürgen Kleine-Vehn (University of Natural Resources and Life Sciences, Austria). The main part of my work focused on the formation of lateral roots in Arabidopsis thaliana and was conducted in close collaboration with Dr. Alexis Maizel (University of Heidelberg, Germany). Previously, most experiments that describe lateral root formation have been performed on a small number of cells and for short periods of time. Capturing the complete process of lateral roots is an ambitious goal, because first, the primordium of a lateral root is located deep inside the primary root and imaging quality is impaired due to scattering of the overlaying tissue. Second, the process takes about 48 h, i.e. the plant has to be kept healthy for the whole period. Third, the amount of excitation light required for the spatio-temporal might have phototoxic effects that lead to a stop of growth at least in conventional microscopic techniques. In Arabidopsis embryogenesis, the sequence of cell divisions is relatively invariant. However, whether lateral root organogenesis follows particular cell division patterns has been unknown. The complete process of lateral root formation was captured from the first cell division until after the emergence from the main root. Images of a nuclei marker and a plasmamembrane marker were recorded every 5 min for a time period of up to 64 h. The positions and cell divisions of all cells were tracked manually. In collaboration with Alexander Schmitz (Goethe University Frankfurt am Main, Germany) and Dr. Jens Fangerau (University of Heidelberg, Germany), comprehensive analyses of the data were performed. A lateral root forms from initially 8-15 founder cells, arranged in a patch of 5-8 parallel files. The occurrence of new cell layers by periclinal divisions, as well as the sequence of layer generation was conserved and resembles the sequence suggested by Malamy and Benfey in 1997. Besides this stereotyped occurrence of periclinal divisions, radial divisions were found to appear stochastically, following no particular pattern. A large variability was also found in the contribution of founder cells and cell files to the final lateral root. In summary, the results suggest that a stereotyped pattern of cell divisions at particular developmental stages and a dynamically adapted control of cell divisions exist in parallel. Both properties allow a controlled but flexible development of the organ according to variations in cell topology and mechanical properties of the surrounding tissue. This work shows that LSFM, the sample preparation methods and controlled environmental conditions allow to capture and analyse the development of plants over several days at high resolution in an unprecedented manner.

Download full text files

Export metadata

Metadaten
Author:Daniel von WangenheimORCiDGND
URN:urn:nbn:de:hebis:30:3-376729
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Ernst H. K. StelzerORCiDGND, Enrico SchleiffORCiDGND
Advisor:Ernst H. K. Stelzer
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/06/03
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/04/17
Release Date:2015/06/03
Page Number:219
HeBIS-PPN:359676014
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht