• search hit 18 of 26
Back to Result List

Opposite effects of "mstnb" and "inhbaa" on cardiomyocyte proliferation during development and repair

  • The adult mammalian heart is unable to regenerate lost myocardial tissue after injury. In contrast, some lower vertebrates including zebrafish are able to undergo complete epimorphic regeneration following multiple types of cardiac injury. During the process of regeneration, spared zebrafish cardiomyocytes in the vicinity of the injured area undergo dedifferentiation and proliferation, thereby giving rise to new cardiomyocytes which replace the injured muscle. Insights into the molecular networks controlling these regenerative processes might help to develop novel therapeutic strategies to restore cardiac performance in humans. While TGF-β signaling has been implicated in zebrafish cardiac regeneration, the role of individual TGF-β ligands remains to be determined. Here, I report the opposing expression response of two TGF-β ligand genes, mstnb and inhbaa, during zebrafish heart regeneration. Using gain- and loss-of-function approaches, I show that these ligands exert opposite effects on cardiac regeneration and specifically on cardiomyocyte proliferation. Notably, I show that overexpression of mstnb and loss of inhbaa negatively regulate cardiomyocyte proliferation and therefore disturb cardiac regeneration. In contrast, loss of mstnb and activation of inhbaa not only promote physiological cardiomyocyte proliferation but also enhance cardiac regeneration. I also identify Inhbaa as a mitogen which promotes cardiomyocyte proliferation independent of the well-established Nrg-ErbB signaling. Mechanistically, I unraveled that Mstnb and Inhbaa function through alternate Activin type 2 receptor complexes to control the activities of the signal transducers, Smad2 and Smad3, thereby regulating cardiomyocyte proliferation. Altogether, I reveal novel and unidentified opposite functions of two TGF-β ligands during cardiac development and regeneration, resulting in a pro-mitogenic as well as an anti-mitogenic effect on cardiomyocytes. This study should therefore stimulate further research on targeting specific TGF-β family members to generate novel regenerative therapeutic strategies.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Deepika Dogra
URN:urn:nbn:de:hebis:30:3-457960
Place of publication:Frankfurt am Main
Referee:Didier StainierORCiD, Virginie LecaudeyORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/02/28
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/19
Release Date:2018/03/01
Page Number:188
HeBIS-PPN:431226083
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht