• Treffer 184 von 184
Zurück zur Trefferliste

Tests erweiterter Kerr- und Schwarzschild-Metriken im Rahmen der Beschreibung von Teilchenorbits, Akkretionsscheiben und Gravitationswellen

  • Im Rahmen dieser Arbeit werden verschiedene Modellsysteme untersucht, die Metriken der klassischen Allgemeinen Relativitätstheorie mit Erweiterungen vergleichen, in denen Ereignishorizonte nicht existieren müssen. Die untersuchten Korrekturterme sind durch Schwachfeldmessungen, wie sie zum Beispiel in unserem Sonnensystem durchgeführt werden, nicht überprüfbar. Es ist deshalb nötig solche Systeme zu betrachten, in denen die vollständigen Gleichungen berücksichtigt werden müssen und keine Entwicklungen für schwache Felder gemacht werden können. Es gibt eine Reihe von astrophysikalischen Systemen, die diese Bedingungen erfüllen, wie das Galaktische Zentrum oder Doppelsternsysteme. Im zweiten Kapitel der Arbeit werden Testteilchenorbits in einem Zentralpotential beschrieben und Unterschiede zwischen der klassischen und einer modifizierten Kerr-Metrik herausgearbeitet. Drei neue Phänomene der modifizierten Metrik gegenüber der Klassischen treten hier in Erscheinung. Zum einen haben Teilchen, die sich auf prograden Bahnen um den Zentralkörper drehen, ein Maximum in ihrer Winkelgeschwindigkeit. Zum anderen ist das Phänomen des frame-draggings deutlich schwächer ausgeprägt. Schließlich tritt ein letzter stabiler Orbit für entsprechend schnell rotierende Zentralkörper nicht mehr auf. Gleichzeitig sind die Unterschiede in den beiden Metriken für große Abstände (r > 10m) nahezu vernachlässigbar. In Kapitel 3 werden diese Ergebnisse auf zwei unterschiedliche Modelle zur Beschreibung von Akkretionsscheiben angewendet. Untersucht wird zum einen das Verhalten der Eisen-Kα-Emissionslinie und zum anderen der Energiefluss aus einer Akkretionsscheibe. In der Form der Eisen-Kα-Emissionslinie gibt es eine deutliche Zunahme des rotverschobenen Anteils der Strahlung in der modifizierten Kerr-Metrik gegenüber der klassischen Kerr-Metrik. Die Akkretionsscheibe nach Page und Thorne zeigt unter Verwendung der modifizierten Kerr-Metrik eine signifikante Erhöhung der abgestrahlten Energie, wenn der Zentralkörper so schnell rotiert, dass kein letzter stabiler Orbit mehr auftritt. Zusätzlich gibt es hier in der Scheibe einen dunklen Ring im Vergleich zu den Bildern höherer Ordnung, die in der klassischen Kerr-Metrik auftreten. Erklärbar sind diese Phänomene dadurch, dass sich Teilchen auf stabilen Bahnen in der modifizierten Kerr-Metrik näher an den Zentralkörper heran bewegen können, als es in der klassischen Kerr-Metrik der Fall ist. Die Rotverschiebung ist für beide Fälle annäherend gleich. Kapitel 4 gibt eine kurze Einführung in die Beschreibung von Gravitationswellen im Rahmen der linearisierten Allgemeinen Relativitätstheorie. Hier wird als Modell ein Binärsystem, wie etwa der Hulse-Taylor-Pulsar, betrachtet. Die Unterschiede zwischen der klassischen Theorie und einer Beschreibung unter Hinzunahme von Zusatztermen sind hier erwartungsgemäß sehr gering, da die Linearisierung der Gleichungen dazu führt, dass Starkfeldeffekte vernachlässigt werden. Für große Abstände, was in diesem Fall auch schwache Felder impliziert, sind die Erweiterungen der Gleichungen vernachlässigbar. Hier werden zum Teil auch Effekte in der klassischen ART vernachlässigt. In Kapitel 5 befindet sich ein kurzer Ausblick in die 3+1-Formulierung der Einsteingleichungen für die numerische Beschreibung von Gravitationsphänomenen. Diese Beschreibung ermöglicht es auch komplexe Systeme ohne viele nähernde Annahmen genau beschreiben zu können. Diese Systeme können zum einen Akkretionsscheiben um kompakte Objekte sein, aber auch die Verschmelzung von zwei massiven Objekten und die damit verbundenen Gravitationswellensignale. Dadurch lassen sich die Vorhersagen der ART oder etwaiger Erweiterungen präziser modellieren. Die vorgestellten Ergebnisse liegen innerhalb der Einschränkungen durch aktuelle Messungen. Zukünftige Messungen wie genauere Beobachtungen des Galaktischen Zentrums durch das Event Horizon Telescope sind aber voraussichtlich dazu in der Lage zwischen den untersuchten Metriken zu unterscheiden.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Thomas Schönenbach
URN:urn:nbn:de:hebis:30:3-367882
Verlag:Univ.-Bibliothek
Verlagsort:Frankfurt am Main
Gutachter*in:Walter GreinerGND, Peter O. Heß, Marcus BleicherORCiDGND
Betreuer:Walter Greiner, Peter O. Heß
Dokumentart:Dissertation
Sprache:Deutsch
Datum der Veröffentlichung (online):29.01.2015
Jahr der Erstveröffentlichung:2015
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:22.01.2015
Datum der Freischaltung:04.02.2015
Seitenzahl:152
Letzte Seite:152
HeBIS-PPN:354454765
Institute:Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht