• search hit 3 of 4
Back to Result List

Investigating the influence of truffle´s microbiome and genotype on the aroma of truffle fungi

  • Truffles (Tuber spp.) are belowground forming fungi that develop in association with roots of various host trees and shrubs. Their fruiting bodies are renowned for their enticing aromas which vary considerably, even within truffles of the same species. This aroma variability might be attributed to factors such as geographical origin, degree of fruiting body maturation, truffle genotype and microbiome (microbial communities that colonise truffle fruiting bodies) which often co-vary. Although the influence of specific factors is highlighted by several studies, discerning the contribution of each factor remains a challenge since it requires an appropriate experimental design. The primary purpose of this thesis was to gain insight into the influence of truffle’s genotype and microbiome on truffle aroma. This doctoral thesis is comprised of four chapters. Chapter1 (Vahdatzadeh et al., 2018) aimed to exclusively elucidate the influence of truffle genotype on truffle aroma by investigating the aroma of nine mycelial strains of the white truffle Tuber borchii. We also assessed whether strain selection could be employed to improve the human- perceived truffle aroma. Quantitative differences in aroma profiles among strains could be observed upon feeding of amino acids. Considerable aroma variabilities among strains were attributed to important truffle volatiles, many of which might be derived from amino acid catabolism through the Ehrlich pathway. 13 C-labelling experiments confirmed the existence of the Ehrlich pathway in truffles for leucine, isoleucine, methionine, and phenylalanine. Sensory analyses further demonstrated that the human nose can differentiate among strains. Our results illustrated the influence of truffle genotype on truffle aroma and showed how strain selection could be used to improve the human-perceived truffle aroma. In chapter 2 the existing knowledge on the composition of bacterial community of four truffle species was compiled using meta-analysis approach (Vahdatzadeh et al., 2015). We highlighted the endemic microbiome of truffle as well as similarities and differences in the composition of microbial community within species at various phases of their life cycle. Furthermore, the potential contribution of truffle microbiome in the formation of truffle odorants was studied. Our findings showed that truffle fruiting bodies harbour complex microbial community composed of bacteria, yeasts, filamentous fungi, and viruses with bacteria being the dominant group. Regardless of truffle species, the composition of endemic microbiome of fruiting bodies appeared very similar and was dominated by α-Proteobacteria class. However, striking differences were observed in the bacterial community composition at various stages of the life cycle of truffle.Our analyses further suggested that odorants common to many truffle species might be produced by both truffle fungi and microbes, whereas specific truffle odorants might be derived from microbes only. Nevertheless, disentangling the origin of truffle odorants is very challenging, since acquiring microbe-free fruiting bodies are currently not possible. Chapter 3 (Splivallo et al., 2019) further characterises truffle-associated bacterial communities of fruiting bodies of the black truffle T. aestivum from two different orchards. It aimed at defining the native microbiome in this truffle species, evaluating the variability of their microbiome across orchards, and assessing factors that shape assemblages of the bacterial communities. The dominant bacterial communities in T. aestivum revealed to be similar in both orchards: although a large portion of fruiting bodies were dominated by the α-Proteobacteria class (Bradyrhizobium genus) similar to other so far-assessed truffle species, in few cases β-Proteobacteria (Polaromonas genus), or Sphingobacteria (Pedobacter genus) were found to be predominant classes. Moreover, factors shaping bacterial communities influenced the two orchards differently, with spatial location within the orchard being the main driver in Swiss orchard and collection season in the French one. Surprisingly, in contrast to other fungi, truffle genotype and the degree of fruiting body maturity seemed not to contribute in shaping the assembly of truffle microbiome. Altogether, our data highlighted the existence of heterogeneous bacterial communities in T. aestivum fruiting bodies which are dominated by either of the three bacterial classes and mainly by the α-Proteobacteria class, irrespective of geographical origin. They further illustrated that determinants driving the assembly of various bacterial communities within truffle fruiting bodies are site-specific. Truffles are highly perishable delicacies with a short shelf life (1-2 weeks), and their aroma changes profoundly upon storage. Since truffle aroma might be at least partially produced by the truffle microbiome, chapter 4 (Vahdatzadeh et al., 2019) focuses on assessing the influence of the truffle microbiome on aroma deterioration of T.aestivum during post harvest storage. Specifically, volatile profile and bacterial communities of fruiting bodies collected from four different regions (three in France and one in Switzerland) were studied over nine days of storage. Our findings demonstrated the gradual replacement of dominant bacterial classes in fresh truffles (α-Proteobacteria, β-Proteobacteria, and Sphingobacteria) by food spoilage bacteria (members of γ- Proteobacteria and Bacilli classes), regardless of the initial diversity of the bacterial classes. This shift in the bacterial community also correlated with changes in volatile profiles, and markers for truffle freshness and spoilage could be identified. Ultimately, network analysis illustrated possible links among those volatile markers and specific bacterial classes. Our data showed that storage deeply influenced the composition of bacterial community as well as aroma of truffle fruiting bodies. They also illustrated the correlation between the shift in truffle microbiome, from commensal to detrimental, and the change of aroma profile, possibly leading to the loss of fresh truffle aroma. Overall, the work undertaken in this thesis demonstrated that truffle genotype and microbiome had a stronger influence on truffle aroma than previously believed.

Download full text files

Export metadata

Metadaten
Author:Maryam VahdatzadehGND
URN:urn:nbn:de:hebis:30:3-518499
Place of publication:Frankfurt am Main
Referee:Richard SplivalloORCiD, Eckhard BolesORCiD
Advisor:Richard Splivallo
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/01/12
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/29
Release Date:2019/12/05
Tag:aroma; fungi; genotype; microbiome
Truffle
Page Number:130
HeBIS-PPN:456456430
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht