Biochemische und elektronenkristallographische Untersuchungen an Membranproteinen

  • Der Cytochrom b6f Komplex vermittelt den Elektronentransport zwischen Photosystem II und Photosystem I und nimmt damit eine zentrale Rolle in der Photosynthese ein. Das im Rahmen dieser Arbeit erstellte Protokoll für die Präparation des Cytochrom b6f Komplexes aus Spinat ermöglichte eine reproduzierbare Reinigung von hochaktivem Enzym. Die spektroskopischen Daten stimmen mit den publizierten Daten für den Komplex überein. SDS-PAGE zeigte alle vier großen Untereinheiten sowie eine Bande der kleinen 4 kDa Untereinheiten. Die Präparation ist mit 450 ± 60 Elektronen pro Sekunde 10 - 15 mal aktiver als in bisherigen Veröffentlichungen für Präparationen aus Pflanzenblättern beschrieben und fast doppelt so aktiv wie die besten Präparationen aus Chlamydomonas reinhardtii. Die Zuverlässigkeit des Aktivitätstests konnte durch den Wechsel des Lösungsmittels für den Elektronendonor von Ethanol zu Dimethylsulfoxid erheblich verbessert werden. Die hohe Effizienz der Proteinreinigung und die hohe Aktivität des Komplexes stellen ideale Voraussetzungen für biophysikalische und strukturelle Studien dar. Versuche zur zweidimensionalen Kristallisation des Cytochrom b6f Komplexes erbrachten Kristalle mit verschiedenen Morphologien, die unterschiedlich gut geordnet waren. Eine Projektionsdichtekarte bis zu einer Auflösung von 20 Å von mehrschichtigen Kristallen zeigte strukturelle Übereinstimmungen, aber auch Unterschiede zu dem verwandten Komplex aus der einzelligen Alge C.reinhardtii. H -ATPase Plasmamembran H -ATPasen wandeln chemische Energie (in Form von ATP) in einen elektrochemischen Gradienten um, der als Energielieferant von sekundären Transportproteinen dient. Es ist gelungen, zweidimensionale Kristalle der heterolog exprimierten und mit einem His-tag ausgestatteten Plasmamembran H -ATPase AHA2 aus Arabidopsis thaliana zu erzeugen. Zwei verschiedene Methoden wurden dabei angewandt. Zum einen wurde das Protein wurde in Proteoliposomen rekonstituiert, und die so gewonnenen Vesikelkristalle resultierten in einer Projektionsdichtekarte mit einer Auflösung von 8 Å. In einer zweiten Methode wurde eine Technik, basierend auf dem Einsatz neu entwickelter, partiell fluorierter und funktionalisierter Lipide, angewandt. Einzelschichten dieser fluorierten Lipide auf der Oberfläche eines Tropfens erwiesen sich auch in Anwesenheit von Detergenz als stabil. Die funktionalisierte Ni2 -NTA-Kopfgruppe der fluorierten Lipide ermöglichte eine Bindung des Proteins über den His-tag. Nach Detergenzentzug bildeten sich in einer Lipiddoppelmembran eingebettete 2D-Kristalle mit einem Durchmesser von bis zu 10 (m, die für die Erstellung einer Projektionsdichtekarte bis 9 Å genutzt wurden. Die beiden elektronenkristallographisch erstellten Projektionskarten waren sehr ähnlich. Sie zeigten drei voneinander abgegrenzte Domänen, die in Zusammenhang mit einer vorliegenden Struktur der verwandten Ca2 -ATPase interpretiert werden konnten. Die Technik der Oberflächenkristallisation eröffnet neue Möglichkeiten für die Kristallisation von Membranproteinen. Kristallisationsexperimente können bei Proteinkonzentrationen von nur 50-150 (g/ml durchgeführt werden und sind für alle Membranproteine, die mit einem His-tag exprimiert werden können, anwendbar. Es wurde ein Homologiemodell der Plasmamembran H -ATPase aus Neurospora crassa in Anlehnung an die atomare Struktur der verwandten Ca2 -ATPase SERCA1 erstellt. Beide Enzyme liegen in unterschiedlichen Konformationen vor, die sie während des Reaktionszyklus durchlaufen. Es konnte gezeigt werden, dass es sich dabei offenbar um die Bewegung ganzer Domänen handelt. Dabei wurde klar, dass in einem solchen Fall schon 3D-Strukturen bei einer mittleren Auflösung von ca. 8 Å, wie sie mit Hilfe der Elektronenkristallographie verhältnismäßig einfach erreicht werden können, viel zum Verstehen von Reaktionszyklen beitragen können, die große Konformationsänderungen beinhalten.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jens Dietrich
URN:urn:nbn:de:hebis:30-0000000398
Referee:Werner Kühlbrandt
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/07
Year of first Publication:2001
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2001/10/30
Release Date:2003/05/07
HeBIS-PPN:102630224
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht