Identification and characterization of Syndapin I, Vacuolar protein sorting 35 and Neurobeachin as new interaction partners of the glycine receptor

  • The glycine receptor (GlyR) is the major inhibitory neurotransmitter receptor in spinal cord and brainstem. Heteropentameric GlyRs are clustered and anchored at inhibitory postsynaptic sites by the binding of the large intracellular loop between transmembrane domains 3 and 4 of the GlyRbeta subunit (GlyRbeta-loop) to the cytoplasmic scaffolding protein gephyrin. GlyRs are also cotransported with gephyrin along microtubules in the anterograde and retrograde direction due to the binding of gephyrin to microtubule-associated motor proteins. Additionally, GlyRs undergo lateral diffusion in the plasma membrane from extrasynaptic to synaptic sites and vice versa. Since its discovery, gephyrin has remained for many years the only binding partner interacting directly with the GlyRbeta subunit. In an attempt to elucidate further mechanisms involved in GlyR function and regulation at inhibitory postsynaptic sites, a proteomic screen for putative binding partners to the GlyRbeta loop was performed. Three proteins were identified as putative interactors. In this thesis, the interaction between these putative binding proteins and the GlyRbeta subunit was analyzed and characterized. Binding studies with glutathione-S-transferase fusion proteins revealed that all putative binding proteins, Syndapin (Sdp), Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea), interact specifically with the GlyRbeta loop. The Sdp family of proteins are F-BAR and SH3 domain containing proteins. Inmmunocytochemical experiments showed that SdpI as well as the isoforms SdpII-S and SdpIIL colocalize with the full-length GlyRbeta subunit in a mammalian cell expression system. In cultured spinal cord neurons, a partial colocalization of endogenous SdpI with several excitatory and inhibitory synaptic markers was demonstrated. Mapping experiments using deletion mutants narrowed the SdpI binding site down to 22 amino acids. Peptide competition experiments confirmed the specificity of the interaction between SdpI and this sequence of the GlyRbeta subunit. Point mutation analysis revealed a SH3-proline rich domain dependent interaction between SdpI and the GlyRbeta subunit, respectively. In addition, binding studies in mammalian cells showed that both splice variants of SdpII as well as SdpI interact with the GlyR scaffolding protein gephyrin. Although the SdpI and gephyrin binding sites do not overlap, protein competition studies revealed that interaction of the E-domain of gephyrin with the GlyRbeta loop interferes with SdpI binding. Since SdpI is a dynamin binding protein involved in vesicle endocytosis and recycling pathways, a possible function of SdpI in the regulation of GlyR synaptic distribution was investigated. Co-immunoprecipitation experiments confirmed a SdpI-GlyR association in the vesicle-enriched fraction of rat spinal cord tissue. Immunocytochemical studies of SdpI knock out mice showed that the clustering and distribution of GlyRs in the brain stem is unchanged. However, acute down-regulation of SdpI in rat spinal cord neurons by viral shRNA expression led to a reduction in the number and size of GlyR clusters, an effect that could be rescued upon shRNA-resistant SdpI overexpression. Further immunocytochemical analysis of the localization of gephyrin, the gamma2 subunit of the type A gamma-aminobutyric acid receptor (GABAARgamma2 subunit) and the vesicular inhibitory amino acid transporter (VIAAT) under SdpI knock-down conditions showed that both the number and average size of the gamma2-subunit containing GABAA receptor clusters were significantly reduced in spinal cord neurons. In contrast to GlyR and GABAARgamma2 immunoreactivity, the number and average size of gephyrin and VIAAT clusters were barely reduced upon SdpI downregulation. These results suggest that SdpI has a role in GlyR trafficking that can be compensated by other syndapin isoforms or other trafficking pathways. Furthermore, SdpI might be required for the clusters of GlyRs and gamma2-subunit containing GABAARs in spinal cord and brainstem. Vps35 is the core protein of the retromer complex, which mediates the endosome to Golgi apparatus retrieval of different types of receptors in mammals and yeast. Here, protein-protein interaction assays revealed for the first time that Vps35 interacts directly with the GlyRbeta loop as well as with gephyrin. The generation of specific Vps35 antibodies allowed to determine the distribution of this protein in the central nervous system. Immunocytochemical analyses revealed the presence of Vps35 in the somata and neurites of spinal cord neurons, suggesting a possible interaction of Vps35 with the GlyR under physiological conditions. Nbea is a BEACH domain containing, neuron-specific protein. Binding studies revealed a direct interaction between two regions of Nbea and the GlyRbeta loop. Immunocytochemical experiments confirmed a somatic and synaptic distribution of Nbea in primary cultures. In spinal cord neurons, a partial colocalization of Nbea with excitatory and inhibitory synaptic markers suggests a possible interaction of Nbea with the GlyR at inhibitory synaptic sites.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Isabel del Pino Pariente
URN:urn:nbn:de:hebis:30-92193
Referee:Ernst BambergGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/02/18
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/02/09
Release Date:2011/02/18
HeBIS-PPN:231197896
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht