Protein acetylation in archaea, bacteria, and eukaryotes

  • Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jörg SoppaORCiD
URN:urn:nbn:de:hebis:30-83109
DOI:https://doi.org/10.1155/2010/820681
Parent Title (German):Archaea
Document Type:Article
Language:English
Date of Publication (online):2010/10/22
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2010/10/22
Volume:2010
Issue:Article ID 820681
Page Number:9
Note:
Copyright © 2010 Jörg Soppal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source:Archaea, Volume 2010, Article ID 820681, 9 pages ; doi:10.1155/2010/820681
HeBIS-PPN:229628001
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoDeutsches Urheberrecht