### Refine

#### Year of publication

#### Document Type

- Article (579)
- Doctoral Thesis (476)
- Preprint (359)
- Conference Proceeding (177)
- Diplom Thesis (134)
- Bachelor Thesis (63)
- Master's Thesis (54)
- Periodical Parts (28)
- Book (23)
- Working Paper (15)

#### Is part of the Bibliography

- no (1943) (remove)

#### Keywords

- Kollisionen schwerer Ionen (28)
- heavy ion collisions (22)
- Kollisionen schwerer Ionen (19)
- heavy ion collisions (19)
- Quark-Gluon-Plasma (16)
- quark-gluon plasma (12)
- QGP (9)
- Quark Gluon Plasma (9)
- Quark-Gluon-Plasma (9)
- equation of state (9)

#### Institute

- Physik (1943) (remove)

- The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry (2020)
- For large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of u and d¯ Cooper pairs. This phase, which is denoted as the Bardeen-Cooper-Schrieffer (BCS) phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at μI≥mπ/2 by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both deconfinement and charged pion condensation, comes from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential).

- Diffusion of conserved charges in relativistic heavy ion collisions (2019)
- We discuss the diffusion currents occurring in a dilute system and show that the charge currents do not only depend on gradients in the corresponding charge density, but also on the other conserved charges in the system—the diffusion currents are therefore coupled. Gradients in one charge thus generate dissipative currents in a different charge. In this approach, we model the Navier-Stokes term of the generated currents to consist of a diffusion coefficient matrix, in which the diagonal entries are the usual diffusion coefficients and the off-diagonal entries correspond to the coupling of different diffusion currents. We evaluate the complete diffusion matrix for a specific hadron gas and for a simplified quark-gluon gas, including baryon, electric and strangeness charge. Our findings are that the off-diagonal entries can range within the same magnitude as the diagonal ones.

- Can baryon stopping be understood within a hadronic transport approach (2019)
- The changing shape of the rapidity spectrum of net protons over the SPS energy range is still lacking theoretical understanding. In this work, a model for string excitation and string fragmentation is implemented for the description of high energy collisions within a hadronic transport approach. The free parameters of the string model are tuned to reproduce the experimentally measured particle production in proton-proton collisions. With the fixed parameters we advance to calculations for heavy ion collisions, where the shape of the proton rapidity spectrum changes from a single peak to a double peak structure with increasing beam energy in the experiment. We present calculations of proton rapidity spectra at different SPS energies in heavy ion collisions. Qualitatively, a good agreement with the experimental findings is obtained. In a future work, the formation process of string fragments will be studied in detail aiming to quantitatively reproduce the measurement.

- High energy cosmic ray interactions and UHECR composition problem (2019)
- The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.

- Two-dimensional control of electron localization in H2 dissociation with elliptically polarized few-cycle pulses (2019)
- We demonstrate two-dimensional control over the chargelocalization in H2 dissociation using elliptically polarized laser pulses. The influences of the CEP and the laser phase at the instant of ionization are investigated.

- The very forward hadron calorimeter PSD for the future CBM@FAIR experiment (2019)
- The Projectile Spectator Detector (PSD) of the CBM experiment at the future FAIR facility is a compensating lead-scintillator calorimeter designed to measure the energy distribution of the forward going projectile nucleons and nuclei fragments (reaction spectators) produced close to the beam rapidity. The detector performance for the centrality and reaction plane determination is reviewed based on Monte-Carlo simulations of gold-gold collisions by means of four different heavy-ion event generators. The PSD energy resolution and the linearity of the response measured at CERN PS for the PSD supermodule consisting of 9 modules are presented. Predictions of the calorimeter radiation conditions at CBM and response measurement of one PSD module equipped with neutron irradiated MPPCs used for the light read out are discussed.

- The molecular attoclock: sub-cycle control of electronic dynamics during H2 double ionization (2019)
- We introduce and employ the molecular attoclock method. This allows us to simultaneously trace the nuclear and electron dynamics during H2 fragmentation, and to CEP-control the two-electron emission dynamics on sub-cycle time scales.

- High-order methods in fully general-relativistic hydrodynamics & magnetohydrodynamics (2019)
- This thesis is a summary of existing and upcoming publications, with a focus on high order methods in numerical relativity and general relativistic flows. The text is structed in five chapters. In the first three ones, the ADER-DG technique and its application to the Einstein-Euler equations is introduced. Novel formulations for both the Einstein equations in the 3+1 split as well as the general relativistic magnetohydrodynamics (GRMHD) had to be derived. The first order conformal and covariant Z4 formulation of Einstein equations (FO-CCZ4) is proposed and proven to be strongly hyperbolic. Together with the fluid equations of general relativistic magnetohydodynamics (GRMHD), a number of benchmark scenarios is presented to show both the correctness of the PDEs as well as the applicability of the numerical scheme. As an application in astrophysics, a general-relativistic study of the treshold mass for a prompt-collapse of a binary neutron star merger with realistic nuclear equation of states has been carried out. A nonlinear universal relation between the treshold mass and the maximum compactness is found. Furthermore, by taking recent measurements of GW170817 into account, lower limits on the stellar radii for any mass can be given. Furthermore, an (unpaired) work in quantum mechanical black hole engineering is presented. Higher dimensional extensions of generalized Heisenberg’s uncertainty principle (GUP) are studied. A number of new phenomenology is found, such as the existence of a conical singularity which mimics the effect of a gravitational monopole on short scale and that of a Schwarzschild black hole at a large scale, as well as oscillating Hawking temperatures which we call "lighthouse effect". All results are consistent with the self complete paradigm and a cold evaporation endpoint remnant.

- Detecting the hadron-quark phase transition with gravitational waves (2019)
- The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marks the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it is now possible to constrain several global properties of the equation of state of neutron star matter. However, the most interesting part of the high density and temperature regime of the equation of state is solely imprinted in the post-merger gravitational wave emission from the remnant hypermassive/supramassive neutron star. This regime was not observed in GW170817, but will possibly be detected in forthcoming events within the current observing run of the LIGO/VIRGO collaboration. Numerous numerical-relativity simulations of merging neutron star binaries have been performed during the last decades, and the emitted gravitational wave profiles and the interior structure of the generated remnants have been analysed in detail. The consequences of a potential appearance of a hadron-quark phase transition in the interior region of the produced hypermassive neutron star and the evolution of its underlying matter in the phase diagram of quantum cromo dynamics will be in the focus of this article. It will be shown that the different density/temperature regions of the equation of state can be severely constrained by a measurement of the spectral properties of the emitted post-merger gravitational wave signal from a future binary compact star merger event.

- From criticality to learning: a study of self-organization in recurrent neural networks (2019)
- The brain is a large complex system which is remarkably good at maintaining stability under a wide range of input patterns and intensities. In addition, such a stable dynamical state is able to sustain essential functions, including the encoding of information about the external environment and storing memories. In order to succeed in these challenging tasks, neural circuits rely on a variety of plasticity mechanisms that act as self-organizational rules and regulate their dynamics. Based on toy models of self-organized criticality, this stable state has been proposed to be a phase transition point, poised between distinct types of unhealthy dynamics, in what has become known as the critical brain hypothesis. It is not yet known, however, if and how self-organization could drive biological neural networks towards a critical state while maintaining or improving their learning and memory functions. Here, we investigate the emergence of criticality signatures in the form of neuronal avalanches due to self-organizational plasticity rules in a recurrent neural network. We show that power-law distributions of events, widely observed in experiments, arise from a combination of biologically inspired synaptic and homeostatic plasticity but are highly dependent on the external drive. Additionally, we describe how learning abilities and fading memory emerge and are improved by the same self-organizational processes. We finally propose an application of these enhanced functions, focusing on sequence and simple language learning tasks. Taken together, our results suggest that the same self-organizational processes can be responsible for improving the brain’s spatio-temporal learning abilities and memory capacity while also giving rise to criticality signatures under particular input conditions, thus proposing a novel link between such abilities and neuronal avalanches. Although criticality was not verified, the detailed study of self-organization towards critical dynamics further elucidates its potential emergence and functions in the brain.