559 search hits
-
ω(782) und ϕ(1020) Mesonenproduktion durch Dielektronen in pp-Kollisionen bei √s = 7 TeV mit ALICE
(2013)
-
Mahmut Özdemir
- Die Niedrigmassendielektronen (Elektron-Positron Paare mit kleiner invarianten Masse) sind wichtige experimentelle Sonden, um die Eigenschaften des in ultra-relativistischen Schwerionenkollisionen erzeugten heißen und dichten Mediums zu untersuchen. Elektronen koppeln nicht an die starke Wechselwirkung, weshalb sie wichtige Informationen über die gesamten Kollisionsphasen geben. Die Zerfälle von ω(782) und ϕ(1020)-Mesonen in Dielektronen ermöglichen es, besonders wichtige Informationen über ihre In-Medium-Eigenschaften zu erhalten, da Proton-Proton (pp)-Kollisionen als mediumfreie Referenz angenommen werden. Außerdem sind pp-Kollisionen auch für sich genommen interessant, um die Teilchenproduktion im Energiebereich des LHC (Large Hadron Collider) zu untersuchen.
In dieser Analyse werden die Elektronen im mittleren Rapiditätsbereich von |η| < 0.8 mit ITS (Inner Tracking System), TPC (Time Projection Chamber) und TOF (Time of Flight) gemessen.
Die transversalen Impulsspektren der ω(782) und ϕ(1020)-Mesonen im e+e--Zerfallskanal in pp-Kollisionen bei p √s = 7 TeV werden gezeigt. Das transversale Impulsspektrum des ω(782)-Mesons im e+e--Zerfallskanal wird mit den pT-Spektren in den µ+µ--und in den π0π+π--Zerfallskanälen verglichen, während das pT-Spektrum vom ϕ(1020)-Meson im e+e--Zerfallskanal mit den pT-Spektren in µ+µ-- und K+K--Zerfallskanälen verglichen wird.
-
Ω und Anti-Ω in ultrarelativistischen Blei-Blei-Kollisionen bei 40 A GeV
(2004)
-
Michael Kosta Mitrovski
- In dieser Arbeit wurde die Produktion von Omega und Anti-Omega Hyperonen in zentralen Pb+Pb-Kollisionen bei 40 A GeV am CERN SPS mit dem NA49 Experiment untersucht. Der in dieser Arbeit verwendete Datensatz wurde während einer 4 wöchigen Strahlzeit 1999 aufgenommen. Dabei wurden 579446 Zentrale (7.2 % des totalen Wirkungsquerschnitts) Ereignisse, bei zwei verschiedenen Polarit aten (std+ und std-), aufgezeichnet. Die Omega Produktion bei 40 A GeV wird mit Messungen bei anderen Energien verglichen, um damit die Energieabhangigkeit der Omega Produktion zu untersuchen. Das Experiment NA49 erlaubt genaue Messungen in einem weiten Akzeptanzbereich. Man misst die Zerfallstochter des Omegas und die Zerfallstochter des Omegas mit hochauflösenden TPCs. Mehrfach seltsame Teilchen (Theta, Omega) werden durch ihre Zerfallstopologie identifiziert. Es wurden verschieden Qualitatskriterien verwendet, um den kombinatorischen Untergrund zu reduzieren. NA49 hat nur eine endliche geometrische Akzeptanz und kann deshalb nicht den ganzen Phasenraum abdecken. Außerdem wurden verschiedene Qualitatskriterien verwendet, um ein akzeptables Signal zu Untergrund Verhaltnis zu erhalten. Da es wegen der Akzeptanz und der Qualitatskriterien zu Verlusten kommt, muss man darauf korrigieren. Dies macht man mittels einer Simulation, in der man Omega Hyperonen simuliert. Die Omega Hyperonen werden uber drei Rapiditatseinheiten um den Bereich zentraler Rapiditat und mit Transversalimpulsen von 0.9 bis 2.4 GeV/c gemessen. Es wurde der Temperaturparameter des Omega Hyperons bei 40 A GeV bestimmt. Im Rahmen der Fehler ist der Temperaturparameter der 40 A GeV dem der 158 A GeV gleich. Betrachtet man den Temperaturparameter der Omegas als Funktion der Schwerpunktenergie, gibt es einen Anstieg des Temperaturparameters von SPS- zu RHIC-Energien. Es wurden jeweils die Multiplizitaten bei mittlerer Rapiditat für Omega und Anti-Omega bestimmt. Die Multiplizität vom Omega betragt 0.068 +- 0.020 (stat.) +- 0.019 (sys.) und vom Anti-Omega 0.027 +- 0.008 (stat.) +- 0.007 (sys.). Die Multiplizitaten bei mittlerer Rapiditat steigen für Omega und Anti-Omega mit der Schwerpunktenergie von SPS- zu RHIC-Energien. Die Ergebnisse stimmen mit den Messungen der NA57 Kollaboration überein. Bei 40 A GeV wurde erstmals eine Rapiditatsverteilung gemessen. Die daraus resultierende totale Multiplizitat fur Omega + Anti-Omega betragt 0.20 +- 0.03 (stat.) +- 0.04 (sys.). Mit steigender Schwerpunktenergie steigt die totale Multiplizität und die Rapiditätsverteilung wird breiter. Um den systematischen Fehler zu bestimmen, wurde eine Stabilität-Analyse des mt-Spektrums und der Rapiditatsverteilung durchgefuhrt. Der systematische Fehler der mt-Spektren betragt 18 % und der totalen Multiplizitat 21 %. Schaut man sich die Anregungsfunktion der Omega und Anti-Omega als Funktion der Schwerpunktenergie an, erkennt man, dass es eine leichte Energieabhängigkeit beim Anti-Omega / Pi-Minus ....
-
φ-Produktion in zentralen Blei-Blei-Kollisionen bei 158 AGeV
(2002)
-
Peter Dinkelaker
-
Λ und Λ¯ Produktion in zentralen Blei-Blei-Kollisionen bei 20 und 30 A·GeV am CERN-SPS
(2004)
-
Agnes Carol Joanna Richard
-
Über P.A.M. Diracs Beitrag zur Elektronentheorie
(1997)
-
Frank Linhard
-
Über die Beziehung der begrifflichen Grundlagen der Quantentheorie und der Allgemeinen Relativitätstheorie
(2010)
-
Martin Kober
- In der vorliegenden Dissertation wird die Frage der Vereinheitlichung der Quantentheorie mit der Allgemeinen Relativitätstheorie behandelt, wobei entsprechend dem Titel der Arbeit der Beziehung der Grundbegriffe der beiden Theorien die entscheidende Bedeutung zukommt. Da das Nachdenken über Grundbegriffe in der Physik sehr eng mit philosophischen Fragen verbunden ist, werden zur Behandlung dieser Thematik zunächst in einem Kapitel, das die vier jeweils drei Kapitel umfassenden Teile vorbereitet, die Entwicklung der Theoretischen Physik betreffende wissenschaftstheoretische Betrachtungen sowie einige wesentliche Gedanken aus der Klassischen Philosophie vorgestellt, welche für die weitere Argumentation wichtig sind. Bei letzteren geht es neben einer kurzen Schilderung der Platonischen Ideenlehre in Bezug auf ihre Relevanz für die Physik insbesondere um die Kantische Auffassung von Raum und Zeit als a priori gegebenen Grundformen der Anschauung, deren Bezug zur Evolutionären Erkenntnistheorie ebenfalls thematisiert wird. In den beiden ersten Teilen werden die wesentlichen Inhalte der Allgemeinen Relativitätstheorie und der Quantentheorie vorgestellt, wobei der Deutung der beiden Theorien jeweils ein Kapitel gewidmet wird. In Bezug auf die Allgemeine Relativitätstheorie wird diesbezüglich die Bedeutung der Diffeomorphismeninvarianz herausgestellt und in Bezug auf die Quantentheorie wird zunächst die Grundposition der Kopenhagener Deutung verdeutlicht, die im Mindesten als eine notwendige Bedingung zum Verständnis der Quantentheorie angesehen wird, um anschließend eine Analyse und Interpretation des Messproblems und vor allem entscheidende Argumente für die grundlegende Nichtlokalität der Quantentheorie zu geben. Im dritten Teil der Arbeit wird die seitens Carl Friedrich von Weizsäcker in der zweiten Hälfte des letzten Jahrhunderts entwickelte Quantentheorie der Ur-Alternativen beschrieben, in welcher die universelle Gültigkeit der allgemeinen Quantentheorie begründet und aus ihr die Existenz der in der Natur vorkommenden Entitäten hergeleitet werden soll, auf deren Beschreibung die konkrete Theoretische Physik basiert. Es werden sehr starke Argumente dafür geliefert, dass diese Theorie von den bislang entwickelten Ansätzen zu einer einheitlichen Theorie der Natur, welche die heute bekannte Physik in sich enthält, die vielleicht aussichtsreichste Theorie darstellt und damit die Aussicht bietet, auch für das Problem der Suche nach einer Quantentheorie der Gravitation den richtigen begrifflichen Rahmen zu bilden. Ihre große Glaubwürdigkeit erhält sie durch eine die Klassische Philosophie miteinbeziehende philosophische Analyse der Quantentheorie. Dieses Urteil behält seine Gültigkeit auch dann, wenn die Quantentheorie der Ur-Alternativen aufgrund der ungeheuren Abstraktheit der Begriffsbildung innerhalb der Theorie und der sich hieraus ergebenden mathematischen Schwierigkeiten bisher noch nicht zu einer vollen physikalischen Theorie entwickelt werden konnte. Die alles entscheidende Kernaussage dieser Dissertation besteht darin, dass aus einer begrifflichen Analyse der Quantentheorie und der Allgemeinen Relativitätstheorie mit nahezu zwingender Notwendigkeit zu folgen scheint, dass die physikalische Realität auf fundamentaler Ebene nicht-räumlich ist. Dies bedeutet, dass die These vertreten wird, dass es sich bei dem physikalische Raum, wie er gewöhnlich schlicht vorausgesetzt wird, wenn auch in unterschiedlicher Struktur, in Wahrheit nur um eine Darstellung dahinterstehender dynamischer Verhältnisse nicht-räumlicher Objekte handelt. Diese These stützt sich auf die Diffeomorphismeninvarianz in der Allgemeinen Relativitätstheorie und in noch höherem Maße auf die Nichtlokalität in der Quantentheorie, welche sich wiederum nicht nur in konkreten für die Quantentheorie konstitutiven Phänomenen, sondern dazu parallel ebenso im mathematischen Formalismus der Quantentheorie manifestiert. In Kombination mit der Kantischen Behandlung von Raum und Zeit ergibt sich damit ein kohärentes Bild in Bezug auf die eigentliche Natur des Raumes. Die Quantentheorie der Ur-Alternativen ist diesbezüglich als einzige derzeit existierende Theorie konsequent, indem sie auf der basalen Ebene den Raumbegriff nicht voraussetzt und rein quantentheoretische Objekte als fundamental annimmt, aus deren Zustandsräumen sie die Struktur der Raum-Zeit allerdings zu begründen in der Lage ist. Damit befinden sich diese fundamentalen durch Ur-Alternativen beschriebenen Objekte nicht in einem vorgegebenen Raum, sondern sie konstituieren umgekehrt den Raum. Dies ist eine Tatsache von sehr großer Bedeutung. Im vierten Teil wird schließlich die vorläufige Konsequenz aus diesen Einsichten gezogen. Nach einer kurzen Behandlung der wichtigsten bisherigen Ansätze zu einer quantentheoretischen Beschreibung der Gravitation, wird die Bedeutung der Tatsache, dass die Allgemeine Relativitätstheorie und die Quantentheorie eine relationalistische Raumanschauung nahelegen, nun konkret in Bezug auf die Frage der Vereinheitlichung der beiden Theorien betrachtet. Das bedeutet, dass das Ziel also letztlich darin besteht, einen Ansatz zu einer quantentheoretischen Beschreibung der Gravitation zu finden, bei der so wenig räumliche Struktur wie möglich vorausgesetzt wird. In Kapitel 12 wird diesbezüglich ein von mir entwickelter Ansatz vorgestellt, um zumindest eine Theorie zu formulieren, bei der die metrische Struktur der Raum-Zeit nicht vorausgesetzt sondern in Anlehnung an die Eigenschaften eines fundamentalen Spinorfeldes konstruiert wird, das im Sinne der Heisenbergschen einheitlichen Quantenfeldtheorie die Elementarteilchen einheitlich beschreiben soll. Dieser Ansatz geht bezüglich der Sparsamkeit der Verwendung von a priori vorhandener räumlicher Struktur über die bisherigen Ansätze zu einer Quantentheorie der Gravitation hinaus. Er ist aber dennoch nur als ein erster Schritt zu verstehen. Die konsequente Weiterführung dieses Ansatzes würde in dem Versuch bestehen, eine Verbindung zur von Weizsäckerschen Quantentheorie der Ur-Alternativen herzustellen, die überhaupt keine räumliche Struktur mehr voraussetzt. Hierzu konnten bisher nur aussichtsreiche Grundgedanken formuliert werden. Es wird allerdings basierend auf den in dieser Dissertation dargelegten Argumentationen die Vermutung aufgestellt, dass es im Rahmen der von Weizsäckerschen Quantentheorie der Ur-Alternativen möglich ist, eine konsistente quantentheoretische Beschreibung der Gravitation aufzustellen. In jedem Falle scheint die Quantentheorie der Ur-Alternativen die einzige Theorie zu sein, die aufgrund ihrer rein quantentheoretischen Natur in ihrer Begriffsbildung grundsätzlich genug ist, um eine Aussicht zu bieten, diejenige Realitätsebene zu erfassen, in welcher die Dualität zwischen der Quantentheorie und der Allgemeinen Relativitätstheorie zu einer Einheit gelangt.
-
Über den Oberflächenterm der Gesamtenergie der Atomkerne nach dem Fermigasmodell
(1963)
-
Eberhard Hilf
- Wir haben Aussagen über das Eigenwertspektrum der freien Schwingungegleichung für einen Hohlraum B gesucht, welche unabhängig von der Gestalt des Hohlraumes nur von Gestaltparametern abhängen, die als Integrale über B bzw. über dessen Oberfläche ... Eigenschaften von ganz B darstellen, ohne die lokale Struktur der Oberfläche ... zu enthalten. An drei Testkörpern sehr verschiedener Gestalt (die Gestaltparameter waren ebenfalls verschieden), nämlich Würfel, Kugel und Zylinder, haben wir die Hypothese bestätigt, daß der mittlere Verlauf der Größen "Anzahl N und Summe E aller Eigenwerte unterhalb einer willkürlich vorgegebenen Schranke ER" in Abhängigkeit von der Wahl dieser Schranke i.w. gestaltunabhängig ist. Für den Quader lassen sich im Falle asymptotisch großer ER explizite Ausdrücke für N und E angeben, die für alle drei Testkörper nicht nur den mittleren Verlauf von N und E bei kleinen (endlichen) ER in zweiter Näherung (in Potenzen von Ef exp -1/2) richtig wiedergaben, sondern auch als numerische Näherung dss mittleren Verlaufs von N bzw. E brauchbar waren (relative Kleinheit des Restgliedes). Die mathematische Vermutung, daß sich für aS, große Ef eben diese expliziten Ausdrücke für N bzw. E' als gestaltunabhängig erweisen, soll in einer weiteren Arbeit behandelt werden. Das Ergebnis dieser Arbeit ist überall dort anwendbar, wo Eigenschaften des Spektrums der freien Schwingungsgleichung mit Randbedingungen benötigt werden, die sich aus N. bzw. E ableiten lassen; also vor allem in der Akustik (Zahl der Obertöne eines Hohlraumes unterhalb einer vorgegebenen Frequenz), in der Theorie der Hohlleiter usw. In dieser Arbeit haben wir die Anwendung auf ein einfaches Atomkernmodell betrachtet, das Fermigas-Modell. Es beschreibt den Kern als freies ideales in einem Hohlraum von Kerngestalt befindliches Fermigas. Dann bedeutet N die Teilchenzahl und E die Gesamtenergie des Systems. Ef ist die Fermigrenzenergie und es ist (Ef exp 3/2 /6*Pi*Pi) die Sättigungsdichte im Innern des Systems. Der Koeffizient des zweiten Termes des expliziten (aS.) Ausdrucks für E kann dann als Oberflächenspannung gedeutet werden. Die spezifische Hodell-Oberflächenspannung läßt sich in Abhängigkeit von dem Gestaltparametern und der Siittigungsdichte des Atomkernes schreiben. Nach Einsetzen der empirischen Werte erhalten wir numerisch einen Wert, der nur um 20% vom empirisch aus der v. Weizsäckerformel bekannten Wert für die spez. Oberflächenspannung abwich, obgleich das Modell nur eine äußerst einfache Näherung der Kernstruktur sein kann. Daher gelangten wir zu der Überzeugung, daß der Oberflächenanteil der Bindungsenergie wesentlich ein kinetischer Effekt ist.
-
»Das fühlt sich schon sehr gut an«
(2021)
-
Pia Barth
- Niklas Knitter ist Physikstudent und Freiwilliger Feuerwehrmann. Oder umgekehrt. Schwer auszumachen, was für ihn wichtiger ist. Denn die Freiwillige Feuerwehr ist für den 21-Jährigen nicht bloß irgendein Hobby. In Neu-Isenburg wurde er jetzt als Feuerwehrmann des Jahres ausgezeichnet.
-
Zyklotronresonanzen von Ionen im hochfrequenz-modulierten magnetisch fokussierten Elektronenstrahl
(2000)
-
Bernhard Zipfel
-
Zweiteilchenkorrelationen in zentralen Blei-Blei-Reaktionen bei 158 GeV pro Nukleon
(1997)
-
Harald Appelshäuser
- Mit der Bereitstellung des 208Pb-Strahls durch das CERN-SPS können seit Herbst 1994 Kollisionen schwerster Kerne bei den höchsten zur Zeit in Schwerionenbeschleunigern erreichten Einschußenergien untersucht werden.
Ziel dieser Arbeit ist die Untersuchung der raumzeitlichen Entwicklung von zentralen Pb-Pb-Kollisionen bei 158 GeV/Nukleon. Diese Untersuchung wurde im Rahmen des Experimentes NA49 durchgefüuhrt und stützt sich auf die Analyse von Bose-Einstein-Korrelationen identischer Pionen. Die Auswertung von rund 40000 zentralen Ereignissen, die in zwei verschiedenen Magnetfeldkonfigurationen mit der zweiten Vertex-Spurendriftkammer des NA49-Experimentes aufgezeichnet wurden, erlaubt hierbei eine annähernd vollständige Untersuchung des pionischen Phasenraumes zwischen zentraler Rapidität und der Projektilhemisphäre.
Auf der experimentellen Seite stellt der Nachweis von mehreren hundert geladenen Teilchen pro Ereignis eine große Herausforderung dar. Daher werden in dieser Arbeit die Optimierung von Spurendriftkammern sowie die verwendeten Analyseverfahren und die erreichte experimentelle Auflösung ausführlich diskutiert. Dabei zeigt sich, daß der systematische Einfluß der erreichten Impuls- und Zweispurauflösung auf die Bestimmung der Bose-Einstein-Observablen vernachlässigbar ist.
Die Messung von Korrelationen ungleich geladener Teilchen bestätigt die Beobachtungen früherer Untersuchungen, wonach die Gamowfunktion als Coulombkorrektur der Bose-Einstein-Korrelationsfunktionen in Schwerionenexperimenten nicht geeignet ist. Ein Vergleich mit einem Modell zeigt, daß diese Messungen konsistent sind mit der Annahme einer endlichen Ausdehnung der Pionenquelle von rund 6 fm. In dieser Arbeitwird zur Korrektur daher eine Parametrisierung der gemessenen Korrelationsstärke ungleich geladener Teilchen benutzt, wodurch die systematischen Unsicherheiten bei der Auswertung der Bose-Einstein-Korrelationsfunktionen erheblich reduziert werden konnten.
Die Auswertung der Bose-Einstein-Korrelationen im Rahmen des Yano-Koonin-Podgoretskii-Formalismus erlaubt eine differentielle Bestimmung der longitudinalen Expansionsgeschwindigkeit. Dabei ergibt sich das Bild eines vornehmlich in longitudinaler Richtung expandierenden Systems, wie es bereits in Schwefel-Kern-Reaktionen bei vergleichbaren Einschußenergien beobachtet wurde. Die Transversalimpulsabhängigkeit der transversalen Radiusparameter ist moderat und verträglich mit einer mäßigen radialen Expansion, deren quantitative Bestätigung allerdings im Rahmen von Modellrechnungen erfolgen muß.
Im Rahmen eines einfachen hydrodynamischen Modells kann die Lebensdauer des Systems zu 7-9 fm/c bei schwacher Abhängigkeit von der Rapidität bestimmt werden. Die Zeitdauer der Pionenemission beträgt etwa 3-4 fm/c und wird damit erstmals in ultrarelativistischen Schwerionenreaktionen als signifikant von Null verschieden beobachtet.
Die Auswertung der Korrelationsfunktion unter Verwendung der Bertsch-Pratt-Parametrisierung liefert Ergebnisse, die mit denen der Yano-Koonin-Podgoretskii-Parametrisierung konsistent sind. Dasselbe gilt für den Vergleich der Analyse positiv und negativ geladener Teilchenpaare sowie unter Verwendung verschiedener Bezugssysteme.
Ein Vergleich mit den Ergebnissen von Schwefel-Kern-Reaktionen deutet an, daß die in Pb-Pb ermittelten Ausfriervolumina nicht mit dem einfachen Bild eines Ausfrierens bei konstanter Teilchendichte vereinbar sind. Vielmehr scheint das Pb-Pb-System bei niedrigerer Dichte auszufrieren. Dies läßt darauf schließen, daß die Ausfrierdichte über die mittlere freie Weglänge mit der Größe des Systems zum Zeitpunkt der letzten Wechselwirkung verknüpft ist.