### Refine

#### Year of publication

#### Document Type

- Conference Proceeding (23) (remove)

#### Institute

- Frankfurt Institute for Advanced Studies (FIAS) (23) (remove)

- How can we explore the onset of deconfinement by experiment? (2007)
- There is little doubt that Quantumchromodynamics (QCD) is the theory which describes strong interaction physics. Lattice gauge simulations of QCD predict that in the m,T plane there is a line where a transition from confined hadronic matter to deconfined quarks takes place. The transition is either a cross over (at low m) or of first order (at high m). It is the goal of the present and future heavy ion experiment at RHIC and FAIR to study this phase transition at different locations in the m,T plane and to explore the properties of the deconfined phase. It is the purpose of this contribution to discuss some of the observables which are considered as useful for this purpose.

- Collision energy evolution of elliptic and triangular flow in a hybrid model (2013)
- While the existence of a strongly interacting state of matter, known as “quark-gluon plasma” (QGP), has been established in heavy ion collision experiments in the past decade, the task remains to map out the transition from the hadronic matter to the QGP. This is done by measuring the dependence of key observables (such as particle suppression and elliptic flow) on the collision energy of the heavy ions. This procedure, known as "beam energy scan", has been most recently performed at the Relativistic Heavy Ion Collider (RHIC). Utilizing a Boltzmann+hydrodynamics hybrid model, we study the collision energy dependence of initial state eccentricities and the final state elliptic and triangular flow. This approach is well suited to investigate the relative importance of hydrodynamics and hadron transport at different collision energies.

- Relativistic shock waves and Mach cones in viscous gluon matter (2010)
- To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio n/s. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For n/s = 0.08 a Mach cone structure is observed, whereas the signal smears out for n/s >=0.32.

- Studies of dilepton production in coarse-grained transport dynamics (2013)
- As microscopic transport models usually have difficulties to deal with in-medium effects in heavy-ion collisions, we present an alternative approach that uses coarse-grained output from transport calculations with the UrQMD model to determine thermal dilepton emission rates. A four-dimensional space-time grid is set up to extract local baryon and energy densities, respectively temperature and baryon chemical potential. The lepton pair emission is then calculated for each cell of the grid using thermal equilibrium rates. In the current investigation we inlcude the medium-modified r spectral function by Eletsky et al., as well as contributions from the QGP and four-pion interactions for high collision energies. First dielectron invariant mass spectra for Au+Au collisions at 1.25 AGeV and for dimuons from In+In at 158 AGeV are shown. At 1.25 AGeV a clear enhancement of the total dilepton yield as compared to a pure transport result is observed. In the latter case, we compare our outcome with the NA60 dimuon excess data. Here a good agreement is achieved, but the yield in the low-mass tail is underestimated. In general the results show that the coarse-graining approach gives reasonable results and can cover a broad collision-energy range.

- Hagedorn states and thermalization : XLIX International Winter Meeting on Nuclear Physics, 24 - 28 January 2011, Bormio, Italy (2011)
- In recent years, Hagedorn states have been used to explain the equilibrium and transport properties of a hadron gas close to the QCD critical temperature. These massive resonances are shown to lower h/s to near the AdS/CFT limit close to the phase transition. A comparison of the Hagedorn model to recent lattice results is made and it is found that the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.

- Dynamic enhancement of fluctuation signals at the QCD phase transition (2013)
- We study the impact of nonequilibrium effects on the relevant signals within a chiral fluid dynamics model including explicit propagation of the Polyakov loop. An expanding heat bath of quarks is coupled to the Langevin dynamics of the order parameter fields. The model is able to describe relaxational processes, including critical slowing down and the enhancement of soft modes near the critical point. At the first-order phase transition we observe domain formation and phase coexistence in the sigma and Polyakov loop field leading to a significant amount of clumping in the energy density. This effect gets even more pronounced if we go to systems at finite baryon density. Here the formation of high-density clusters could provide an important observable signal for upcoming experiments at FAIR and NICA.We conclude that improving our understanding of dynamical symmetry breaking is important to give realistic estimates for experimental observables connected to the QCD phase transition.

- Correlated D-meson decays competing against thermal QGP dilepton radiation (2013)
- The QGP that might be created in ultrarelativistic heavy-ion collisions is expected to radiate thermal dilepton radiation. However, this thermal dilepton radiation interferes with dileptons originating from hadron decays. In the invariant mass region between the f and J=y peak (1GeV <= M l+l <=. 3GeV) the most substantial background of hadron decays originates from correlated DD¯ -meson decays. We evaluate this background using a Langevin simulation for charm quarks. As background medium we utilize the well-tested UrQMD-hybrid model. The required drag and diffusion coefficients are taken from a resonance approach. The decoupling of the charm quarks from the hot medium is performed at a temperature of 130MeV and as hadronization mechanism a coalescence approach is chosen. This model for charm quark interactions with the medium has already been successfully applied to the study of the medium modification and the elliptic flow at FAIR, RHIC and LHC energies. In this proceeding we present our results for the dilepton radiation from correlated D¯D decays at RHIC energy in comparison to PHENIX measurements in the invariant mass range between 1 and 3 GeV using different interaction scenarios. These results can be utilized to estimate the thermal QGP radiation.

- Strangeness production in antiproton-nucleus annihilation (2012)
- The results of the microscopic transport calculations of -nucleus interactions within a GiBUU model are presented. The dominating mechanism of hyperon production is the strangeness exchange processes → γπ and → ΞK. The calculated rapidity spectra of Ξ hyperons are significantly shifted to forward rapidities with respect to the spectra of S = −1 hyperons. We argue that this shift should be a sensitive test for the possible exotic mechanisms of -nucleus annihilation. The production of the double Λ-hypernuclei by Ξ− interaction with a secondary target is calculated.

- Emissivity and conductivity of parton-hadron matter (2014)
- We investigate the properties of the QCD matter across the deconfinement phase transition. In the scope of the parton-hadron string dynamics (PHSD) transport approach, we study the strongly interacting matter in equilibrium as well as the out-of equilibrium dynamics of relativistic heavy-ion collisions. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions and the relevant correlator in equilibrium, i.e. the electric conductivity. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow ν2 of direct photons.