101 search hits
-
Vegetation changes and their consequences for the provisioning service of non-timber forest products (NTFPs) in a West African savanna
(2017)
-
Anna Leßmeister
- Savannas provide essential ecosystem services for human well-being in West Africa. Thus, ecosystem change not only directly affects biodiversity but also human livelihoods. Human land use considerably shaped these savanna ecosystems for millennia, particularly agriculture, livestock grazing, logging and the collection of non-timber forest products (NTFPs). NTFPs are wild plant products and comprise all organic matter from herbaceous plants, shrubs, and trees (excluding timber). Current increasing land use pressure through fast demographic changes is widely esteemed as a severe threat for savanna biodiversity and the socio-economy of rural communities. In consideration of the pivotal role of NTFP species for biodiversity and livelihoods, it is important to evaluate the effect of increasing land use change on savanna vegetation and on its provisioning service for human well-being. Thus, the major aim of this thesis is to investigate the impacts of land use intensification on vegetation composition, diversity and function and its consequences for provisioning ecosystem services (NTFPs) and human well-being in a West African savanna.
The research for this study was conducted in the North Sudanian vegetation zone of south-eastern Burkina Faso, where population growth exceeds the nationwide trend. Generally, Burkina Faso belongs to the worldwide poorest countries, where nearly one quarter of the population suffers from malnutrition (FAO 2014). The integration of NTFPs and particularly wild food species into rural household economies is, thus, an important measure in the national combat against poverty and food insecurity (FAO 2014). Against this background, I focus on vegetation changes, the economic importance of NTFPs as well as the decrease and substitution of wild food species in this study.
Vegetation resurveys of different vegetation types since the early 1990s showed that land use change led to more pronounced changes in the herbaceous than in the woody vegetation layer. Most woody vegetation types stayed stable in species composition and richness, even though some highly useful tree species (Vitellaria paradoxa, Parkia biglobosa) declined in some woody vegetation types. In contrast, in most herbaceous vegetation types species richness increased and species composition considerably changed. This change might be explained by a general ruderalisation process through a pronounced increase of wide-ranging herbaceous species. However, in spite of a general species increase in the herbaceous layer, a decrease of preferred herbaceous fodder species was found. Thus, the decline of useful species in both layers is alarming. Herbaceous vegetation types also showed more pronounced changes in plant functional trait characteristics in comparison to woody vegetation types. However, an increase of smaller plant species and species with a high diaspore terminal velocity (VTerm) was found in both vegetation layers. Since these two trait responses are generally related to grazing and browsing, the strong increase of livestock herds is likely to be responsible for the detected vegetation changes.
In addition to the vegetation study, interviews showed that all useful food species were widely considered to decline. The two economically most important tree species, the shea tree (Vitellaria paradoxa) and the locust bean tree (Parkia biglobosa) that contribute with 70% to wild food income, were considered among the most declining species of all cited wild food species. On this matter, local perceptions of species decline and results from field observations are in accordance. However, a wide range of cited substitutes indicated a great knowledge on alternative plant species in the area. Most wild food species are, however, substituted by other highly valued wild food species. Although our results suggest that rural communities are able to cope with the decrease or absence of wild food species, growing decline of one species would concurrently increase the pressure on other native food species. Therefore, the need to counteract the decrease of highly useful wild food species should be of high priority in management measures. In general, I showed that NTFPs are an essential component in rural households, since it contributed with 45 % to total household income. Significant differences in NTFP dependency between the two investigated villages and across the three main ethnic groups were detected, reflecting different traditional uses and harvesting practices. In general, it was shown that poorer households depend more on NTFP income than wealthier households. Against the background of this study, management strategies for agroforestry systems and poverty alleviation should consider local differences, and ethnicity-dependent NTFP-use patterns.
Overall, the combination of field studies on temporal and functional vegetation change with socio-economic and ethno-botanic interviews increases the knowledge on qualitative and quantitative vegetation changes and on the consequences for rural populations. This thesis gives a thorough insight into decreasing trends of economically valued plant species and thus gives evidence on the consequences of vegetation changes for ecosystem services of West African savanna ecosystems. Further, different NTFP-dependencies and use preferences according to socio-economic and cultural variables, such as ethnicity, present a valuable basis for specific decision-making and should be considered in management plans.
-
Modeling the metabolism of arabidopsis thaliana : application of network decomposition and network reduction in the context of petri nets
(2017)
-
Ina Koch
Joachim Nöthen
Enrico Schleiff
- Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.
Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.
Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to nearly all parts of the network, especially to the citric acid cycle. There is a close cooperation of important metabolic pathways, e.g., the de novo synthesis of uridine-5-monophosphate, the γ-aminobutyric acid shunt, and the urea cycle. The presented approach extends the established methods for a feasible interpretation of biological network models, in particular of large and complex models.
-
Acoustic orientation in the dark: About how the brain processes naturalistic echolocation sequences in the fruit-eating bat "Carollia perspicillata"
(2017)
-
Marcel Jerome Beetz
- Echolocation allows bats to orientate in darkness without using visual information. Bats emit spatially directed high frequency calls and infer spatial information from echoes coming from call reflections in objects (Simmons 2012; Moss and Surlykke 2001, 2010). The echoes provide momentary snapshots, which have to be integrated to create an acoustic image of the surroundings. The spatial resolution of the computed image increases with the quantity of received echoes. Thus, a high call rate is required for a detailed representation of the surroundings.
One important parameter that the bats extract from the echoes is an object’s distance. The distance is inferred from the echo delay, which represents the duration between call emission and echo arrival (Kössl et al. 2014). The echo delay decreases with decreasing distance and delay-tuned neurons have been characterized in the ascending auditory pathway, which runs from the inferior colliculus (Wenstrup et al. 2012; Macías et al. 2016; Wenstrup and Portfors 2011; Dear and Suga 1995) to the auditory cortex (Hagemann et al. 2010; Suga and O'Neill 1979; O'Neill and Suga 1982).
Electrophysiological studies usually characterize neuronal processing by using artificial and simplified versions of the echolocation signals as stimuli (Hagemann et al. 2010; Hagemann et al. 2011; Hechavarría and Kössl 2014; Hechavarría et al. 2013). The high controllability of artificial stimuli simplifies the inference of the neuronal mechanisms underlying distance processing. But, it remains largely unexplored how the neurons process delay information from echolocation sequences. The main purpose of the thesis is to investigate how natural echolocation sequences are processed in the brain of the bat Carollia perspicillata. Bats actively control the sensory information that it gathers during echolocation. This allows experimenters to easily identify and record the acoustic stimuli that are behaviorally relevant for orientation. For recording echolocation sequences, a bat was placed in the mass of a swinging pendulum (Kobler et al. 1985; Beetz et al. 2016b). During the swing the bat emitted echolocation calls that were reflected in surrounding objects. An ultrasound sensitive microphone traveling with the bat and positioned above the bat’s head recorded the echolocation sequence. The echolocation sequence carried delay information of an approach flight and was used as stimulus for neuronal recordings from the auditory cortex and inferior colliculus of the bats.
Presentation of high stimulus rates to other species, such as rats, guinea pigs, suppresses cortical neuron activity (Wehr and Zador 2005; Creutzfeldt et al. 1980). Therefore, I tested if neurons of bats are suppressed when they are stimulated with high acoustic rates represented in echolocation sequences (sequence situation). Additionally, the bats were stimulated with randomized call echo elements of the sequence and an interstimulus time interval of 400 ms (element situation). To quantify neuronal suppression induced by the sequence, I compared the response pattern to the sequence situation with the concatenated response patterns to the element situation. Surprisingly, although the bats should be adapted for processing high acoustic rates, their cortical neurons are vastly suppressed in the sequence situation (Beetz et al. 2016b). However, instead of being completely suppressed during the sequence situation, the neurons partially recover from suppression at a unit specific call echo element. Multi-electrode recordings from the cortex allow assessment of the representation of echo delays along the cortical surface. At the cortical level, delay-tuned neurons are topographically organized. Cortical suppression improves sharpness of neuronal tuning and decreases the blurriness of the topographic map. With neuronal recordings from the inferior colliculus, I tested whether the echolocation sequence also induced neuronal suppression at subcortical level. The sequence induced suppression was weaker in the inferior colliculus than in the cortex. The collicular response makes the neurons able to track the acoustic events in the echolocation sequence. Collicular suppression mainly improves the signal-to-noise ratio. In conclusion, the results demonstrate that cortical suppression is not necessarily a shortcoming for temporal processing of rapidly occurring stimuli as it has previously been interpreted.
Natural environments are usually composed of multiple objects. Thus, each echolocation call reflects off multiple objects resulting in multiple echoes following the calls. At present, it is largely unexplored how neurons process echolocation sequences containing echo information from more than one object (multi-object sequences). Therefore, I stimulated bats with a multi-object sequence which contained echo information from three objects. The objects were different distances away from each other. I tested the influence of each object on the neuronal tuning by stimulating the bats with different sequences created from filtering object specific echoes from the multi-object sequence. The cortex most reliably processes echo information from the nearest object whereas echo information from distant objects is not processed due to neuronal suppression. Collicular neurons process less selectively echo information from certain objects and respond to each echo.
For proper echolocation, bats have to distinguish between own biosonar signals and the signals coming from conspecifics. This can be quite challenging when many bats echolocate adjacent to each other. In behavioral experiments, the echolocation performance of C. perspicillata was tested in the presence of potentially interfering sounds. In the presence of acoustic noise, the bats increase the sensory acquisition rate which may increase the update rate of sensory processing. Neuronal recordings from the auditory cortex and inferior colliculus could strengthen the hypothesis. Although there were signs of acoustic interference or jamming at neuronal level, the neurons were not completely suppressed and responded to the rest of the echolocation sequence.
-
APP—A novel player within the presynaptic active zone proteome
(2017)
-
Jens Weingarten
Melanie Weingarten
Martin Wegner
Walter Volknandt
- The amyloid precursor protein (APP) was discovered in the 1980s as the precursor protein of the amyloid A4 peptide. The amyloid A4 peptide, also known as A-beta (Aβ), is the main constituent of senile plaques implicated in Alzheimer’s disease (AD). In association with the amyloid deposits, increasing impairments in learning and memory as well as the degeneration of neurons especially in the hippocampus formation are hallmarks of the pathogenesis of AD. Within the last decades much effort has been expended into understanding the pathogenesis of AD. However, little is known about the physiological role of APP within the central nervous system (CNS). Allocating APP to the proteome of the highly dynamic presynaptic active zone (PAZ) identified APP as a novel player within this neuronal communication and signaling network. The analysis of the hippocampal PAZ proteome derived from APP-mutant mice demonstrates that APP is tightly embedded in the underlying protein network. Strikingly, APP deletion accounts for major dysregulation within the PAZ proteome network. Ca2+-homeostasis, neurotransmitter release and mitochondrial function are affected and resemble the outcome during the pathogenesis of AD. The observed changes in protein abundance that occur in the absence of APP as well as in AD suggest that APP is a structural and functional regulator within the hippocampal PAZ proteome. Within this review article, we intend to introduce APP as an important player within the hippocampal PAZ proteome and to outline the impact of APP deletion on individual PAZ proteome subcommunities.
-
Alternative splicing of HsfA2 mediates thermotolerance in tomato species
(2017)
-
Yangjie Hu
- Heat stress transcription factors (Hsfs) play essential role in heat stress response and thermotolerance by controlling the transcriptional activation of heat stress response (HSR) genes including molecular chaperones. Plant Hsf families show a striking multiplicity, with more than 20 members in the many plant species. Among Hsfs, HsfA1s act as the master regulators of heat stress (HS) response and HsfA2 becomes one of the most abundant Hsfs during HS. Using transgenic plans with suppressed expression of HsfA2 we have shown that this Hsf is involved in acquired thermotolerance of S. lycopersicum cv Moneymaker as HsfA2 is required for high expression and maintenance of increased levels of Hsps during repeated cycles of HS treatment.
Interestingly, HsfA2 undergoes temperature-dependent alternative splicing (AS) which results in the generation of seven transcript variants. Three of these transcripts (HsfA2-Iα-γ), generated due to alternative splicing of a second, newly identified intron encode for the full length protein involved in acquired thermotolerance. Another 3 transcripts (HsfA2-IIIα-γ) are generated due to alternative splicing in intron 1, leading in all cases to a premature termination codon and targeting of these transcripts for degradation via the non-sense mRNA decay mechanism (NMD).
Interestingly, excision of intron 2, results into the generation of a second previously unreported protein isoform, annotated as HsfA2-II. HsfA2-II shows similar transcriptional activity to the full-length protein HsfA2-I in the presence of HsfA1a but lacks the nuclear export signal (NES) required for nucleocytoplasmic shuttling which allows efficient nuclear retention and stimulation of transcription of HS-induced genes. Furthermore, stability assays showed that HsfA2-II exhibits lower protein stability compared to HsfA2-I.
The presence of a second intron and the generation of a second protein isoform we identified in other Solanaceae species as well. Remarkably, we observed major differences in the splicing efficiency of HsfA2 intron 2 among different tomato species. Several wild tomato accessions exhibit higher splicing efficiency that favors the generation of HsfA2-II, while in these species the splice variant HsfA2-Iγ is absent. This natural variation in splicing efficiency specifically occurring at temperatures around 37.5oC is associated with the presence of 3 intronic polymorphisms. In the case of wild species these polymorphisms seemingly restrict the binding of RS2Z36, identified as a putative splicing silencer for HsfA2 intron 2.
Tomato accessions with the polymorphic “wild” HsfA2 show enhanced thermotolerance against a direct severe heat stress incident due to the stronger increase of Hsps and other stress induced genes. Introgression of the “wild” S. pennellii HsfA2 locus into the cultivar M82, resulted in enhanced seedling thermotolerance highlighting the potential use of the polymorphic HsfA2 for breeding.
We conclude that alterations in the splicing efficiency of HsfA2 have contributed to the adaption of tomato species to different environments and these differences might be directly related to natural variation in their thermotolerance.
-
Universal features of dendrites through centripetal branch ordering
(2017)
-
Alexandra Vormberg
Felix Effenberger
Julia Muellerleile
Hermann Cuntz
- Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.
-
Hierarchical patterning modes orchestrate hair follicle morphogenesis
(2017)
-
James D. Glover
Kirsty L. Wells
Franziska Matthäus
Kevin J. Painter
William Ho
Jon Riddell
Jeanette A. Johansson
Matthew J. Ford
Colin A. B. Jahoda
Vaclav Klika
Richard L. Mort
Denis J. Headon
- Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction–diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction–diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern’s condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction–diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
-
Endogenous AJAP1 associates with the cytoskeleton and attenuates angiogenesis in endothelial cells
(2017)
-
Katharina Hötte
Isabell Smyrek
Anna Starzinski-Powitz
Ernst H. K. Stelzer
- The adherens junction associated protein 1 (AJAP1, aka shrew-1) is presumably a type-I transmembrane protein localizing and interacting with the E-cadherin-catenin complex. In various tumors, AJAP1 expression is reduced or lost, including hepatocellular and esophageal squamous cell carcinoma, and glial-derived tumors. The aberrant expression of AJAP1 is associated with alterations in cell migration, invasion, increased tumor growth, and tumor vascularization, suggesting AJAP1 as a putative tumor suppressor. We show that AJAP1 attenuates sprouting angiogenesis by reducing endothelial migration and invasion capacities. Further, we show for the first time that endogenous AJAP1 is associated with the microtubule cytoskeleton. This linkage is independent from cell confluency and stable during angiogenic sprouting in vitro. Our work suggests that AJAP1 is a putative negative regulator of angiogenesis, reducing cell migration and invasion by interfering with the microtubule network. Based on our results and those of other authors, we suggest AJAP1 as a novel tumor suppressor and diagnostic marker.
-
Der Hefepilz Xanthophyllomyces dendrorhous als Produktionsplattform für die Biosynthese von Phytoen und Zeaxanthin
(2017)
-
Hendrik Pollmann
- In dieser Arbeit wurde der Hefepilz Xanthophyllomyces dendrorhous als vielseitige biotechnologische Plattform für die Produktion von Carotinoiden verwendet. Durch genetische Modifikationen der Carotinoidbiosynthese wurde ein Astaxanthin-Hochproduzent zur Akkumulation des farblosen Phytoens, das die menschliche Haut vor der schädlichen Wirkung der UV-Strahlung schützt und des gelben Zeaxanthins, das zur Förderung und Erhalt der Sehfähigkeit beiträgt, befähigt. Zur Generierung eines Phytoen-Hochproduzenten wurde das Gen crtI (Phytoen-Desaturase) inaktiviert und der Phytoengehalt durch Überexpression der Gene HMGR, crtE und crtYB gesteigert. Die Generierung eines Zeaxanthin-Hochproduzenten beinhaltete die Inaktivierung des Gens asy (Astaxanthin-Synthase) und die heterologe Expression einer bakteriellen ß-Carotin-Hydroxylase CrtZoXd.
Die Inaktivierung der Gene erfolgte mit spezifischen Knock-Out-Konstrukten, die mittels homologer Rekombination in crtI oder asy integrierten. Nachdem die Transgene auf Vektoren mit verschiedenen Antibiotikaresistenzen kloniert wurden, wurde die Überexpression durch genomische Integration in die ribosomale DNA erreicht. Anschließend wurde die Carotinoidzusammensetzung der Zellextrakte durch Hochleistungsflüssigkeitschromatographie an einer C18-Trennsäule oder durch Dünnschichtchromatographie bestimmt. Der Knock-Out-Nachweis erfolgte mittels Polymerase-Kettenreaktion und Amplifikation der Genloci, während die Anzahl integrierter Carotinoidgene durch quantitative Real-Time-PCR bestimmt wurde. Die Kultivierungen von X. dendrorhous wurden sowohl in Schikanekolben als auch in einem 2L-Bioreaktor durchgeführt.
Im Zuge der genetischen Modifikationen konnte der Ploidiegrad des Wildtyps bestimmt werden, der bis dahin unbekannt war. Durch das Auftreten von instabilen heterozygoten Stämmen und deren Überführung zu stabilen Homozygoten wurde die Existenz eines diploiden Genoms nachgewiesen. Um die für die biotechnologische Anwendung notwendige Stabilität der Carotinoidbiosyntheseleistung zu erreichen, wurden zwei Strategien entwickelt. Hierbei erfolgte die Stabilisierung der Stämme als Folge mitotischer Rekombination nach Subkultivierung und anschließender Farbselektion oder durch Induktion des sexuellen Zyklus und Sporulation.
Der crtI-Knock-Out führte zur Akkumulation von 3,6 mg/g dw Phytoen. Anschließend wurde die Limitierung der Phytoensynthese durch crtYB-Überexpression aufgehoben und die Versorgung der Carotinoidbiosynthese mit Vorläufermolekülen durch HMGR- und crtE-Überexpression erhöht. Im Bioreaktor wurde durch die Anwendung eines dreistufigen Fed-Batch-Prozesses, der eine effiziente Glucoseverwertung sicherstellte, mit 10,4 mg/g dw die höchste bis dato publizierte zelluläre Phytoenkonzentration im stabilisierten Hochproduzenten erreicht.
Der asy-Knock-Out führte zur Akkumulation von 4,5 mg/g dw ß-Carotin, das anschließend durch heterologe Expression der codon-optimierten ß-3,3-ß-Hydroxylase crtZoXd im Hochproduzenten zu 3,5 mg/g dw Zeaxanthin umgesetzt wurde. Zur Optimierung des Vorgehens wurden Knock-In-Konstrukte entwickelt, mit denen beide Schritte (Knock-Out und Integration von Carotinoidgenen) in nur einem molekular-biologischen Schritt durchgeführt und 94 % des in einem Wildtypstamm vorhanden ß-Carotins zu Zeaxanthin umgesetzt wurden. Die Optimierung der Wachstumsbedingungen bei der Bioreaktor-Kultivierung des stabilisierten Zeaxanthinproduzenten führte mit 10,8 mg/L zu einem 5-fach höheren Zeaxanthingehalt im Vergleich zur Schikane-Kultivierung.
Durch den Einsatz der Pentosen Arabinose und Xylose als alternative Kohlenstoffquellen wurde der Carotinoidgehalt der Phytoen- und Zeaxanthin-Hochproduzenten um 70 bzw. 92 % im Vergleich zur Glucose-Kultivierung gesteigert, wobei die Gründe für diesen Effekt in einer stärkeren Kohlenstoffverwertung und der Hemmwirkung von Glucose vermutet wurden. Aus verschiedenen pflanzlichen Abfallstoffen kann Xylose durch Hydrolyse freigesetzt werden, deren Nutzung zum Aufbau einer nachhaltigen und kostengünstigen biotechnologischen Carotinoidproduktion beitragen kann.
Darüber hinaus wurden multioxigenierte Zeaxanthinderivate, von denen eine positive Wirkung auf die menschliche Gesundheit vermutet wird, durch kombinatorische Biosynthese erhalten. Durch die schrittweise Integration der Gene crtZoXd, crtG (ß-2,2-Hydroxylase) und bkt (ß-4,4-Ketolase) in eine ß-Carotinmutante wurde die Biosynthese von Zeaxanthin, Nostoxanthin und schließlich von 4-Keto-Nostoxanthin und 4,4-Diketo-Nostoxanthin erreicht. Anschließend erfolgte die chemische Reduktion zu den neuartigen Carotinoiden 4-Hydroxy-Nostoxanthin und 4,4-Dihydroxy-Nostoxanthin und der zweifelsfreie Nachweis aller vier Carotinoide anhand der mittels Massenspektrometrie bestimmten Molekülmassen und Fragmentierungsmuster.
-
Lateralization of the avian magnetic compass : analysis of its early plasticity
(2017)
-
Dennis Gehring
Onur Güntürkün
Wolfgang Wiltschko
Roswitha Wiltschko
- In European Robins, Erithacus rubecula, the magnetic compass is lateralized in favor of the right eye/left hemisphere of the brain. This lateralization develops during the first winter and initially shows a great plasticity. During the first spring migration, it can be temporarily removed by covering the right eye. In the present paper, we used the migratory orientation of robins to analyze the circumstances under which the lateralization can be undone. Already a period of 1½ h being monocularly left-eyed before tests began proved sufficient to restore the ability to use the left eye for orientation, but this effect was rather short-lived, as lateralization recurred again within the next 1½ h. Interpretable magnetic information mediated by the left eye was necessary for removing the lateralization. In addition, monocularly, the left eye seeing robins could adjust to magnetic intensities outside the normal functional window, but this ability was not transferred to the “right-eye system”. Our results make it clear that asymmetry of magnetic compass perception is amenable to short-term changes, depending on lateralized stimulation. This could mean that the left hemispheric dominance for the analysis of magnetic compass information depends on lateralized interhemispheric interactions that in young birds can swiftly be altered by environmental effects.