### Refine

#### Document Type

- Article (4)
- Conference Proceeding (1)
- Doctoral Thesis (1)

#### Keywords

#### Institute

- Physik (6) (remove)

- Longitudinal flow and onset of deconfinement (2006)
- The effects of the onset of deconfinement on longitudinal and transverse flow are studied. First, we analyze longitudinal pion spectra from Elab = 2A GeV to √sNN = 200 GeV within Landau’s hydrodynamical model and the UrQMD transport approach. From the measured data on the widths of the pion rapidity spectra, we extract the sound velocity c2s in the early stage of the reactions. It is found that the sound velocity has a local minimum (indicating a softest point in the equation of state, EoS) at Ebeam = 30A GeV. This softening of the EoS is compatible with the assumption of the formation of a mixed phase at the onset of deconfinement. Furthermore, the energy excitation function of elliptic flow (v2) from Ebeam = 90A MeV to √sNN = 200 GeV is explored within the UrQMD framework and discussed in the context of the available data. The transverse flow should also be sensitive to changes in the equation of state. Therefore, the underestimation of elliptic flow by the UrQMD model calculation above Elab = 30A GeV might also be explained by assuming a phase transition from a hadron gas to the quark gluon plasma around this energy. This would be consistent with the model calculations, indicating a transition from hadronic matter to “string matter” in this energy range.

- An integrated Boltzmann + hydrodynamics approach to heavy ion collisions (2009)
- In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. To model the dynamical evolution of the collective system assuming local thermal equilibrium ideal hydrodynamics seems to be a good tool. Nowadays, the development of either viscous hydrodynamic codes or hybrid approaches is favoured. For the microscopic description of the hadronic as well as the partonic stage of the evolution transport approaches have beeen successfully applied, since they generate the full phse-space dynamics of all the particles. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. It constitutes an effective solution of the relativistic Boltzmann equation and is restricted to binary collisions of the propagated hadrons. Therefore, the Boltzmann equation and the basic assumptions of this model are introduced. Furthermore, predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies and the new approach leads to reasonable results over the whole energy range. Studies of phase diagram trajectories using hydrodynamics are performed as a first move into the direction of the development of the hybrid approach. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The initial energy and baryon number density distributions are not smooth and not symmetric in any direction and the initial velocity profiles are non-trivial since they are generated by the non-equilibrium transport approach. The fulll (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. For the present work, three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. Either an in the computational frame isochronous freeze-out or an gradual freeze-out that mimics an iso-eigentime criterion. The particle vectors are generated by Monte Carlo methods according to the Cooper-Frye formula and UrQMD takes care of the final decoupling procedure of the particles. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic flow values at SPS energies are shown to be in line with an ideal hydrodynamic evolution if a proper initial state is used and the final freeze-out proceeds gradually. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent $v_2$ values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from $E_{\rm lab}=2-160A~$GeV. It is observed that the different freeze-out procedures have almost as much influence on the mean transverse mass excitation function as the equation of state. The experimentally observed step-like behaviour of the mean transverse mass excitation function is only reproduced, if a first order phase transition with a large latent heat is applied or the EoS is effectively softened due to non-equilibrium effects in the hadronic transport calculation. The HBT correlation of the negatively charged pion source created in central Pb+Pb collisions at SPS energies are investigated with the hybrid model. It has been found that the latent heat influences the emission of particles visibly and hence the HBT radii of the pion source. The final hadronic interactions after the hydrodynamic freeze-out are very important for the HBT correlation since a large amount of collisions and decays still takes place during this period.

- How can we explore the onset of deconfinement by experiment? (2007)
- There is little doubt that Quantumchromodynamics (QCD) is the theory which describes strong interaction physics. Lattice gauge simulations of QCD predict that in the m,T plane there is a line where a transition from confined hadronic matter to deconfined quarks takes place. The transition is either a cross over (at low m) or of first order (at high m). It is the goal of the present and future heavy ion experiment at RHIC and FAIR to study this phase transition at different locations in the m,T plane and to explore the properties of the deconfined phase. It is the purpose of this contribution to discuss some of the observables which are considered as useful for this purpose.

- Multi-particle interactions within the UrQMD approach (2011)
- A mechanism for locally density-dependent dynamic parton rearrangement and fusion has been implemented into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) approach. The same mechanism has been previously built in the Quark Gluon String Model (QGSM). This rearrangement and fusion approach based on parton coalescence ideas enables the description of multi-particle interactions, namely 3 -> 3 and 3 -> 2, between (pre)hadronic states in addition to standard binary interactions. The UrQMD model (v2.3) extended by these additional processes allows to investigate implications of multi-particle interactions on the reaction dynamics of ultrarelativistic heavy ion collisions. The mechanism, its implementation and first results of this investigation are presented and discussed.

- HBT radii from the UrQMD transport approach at different energies (2011)
- We present results on Hanbury Brown-Twiss (HBT) radii extracted from the Ultra-relativistic Molecular Dynamics (UrQMD) approach to relativistic heavy ion collisions. The present investigation provides a comparison of results from pure hadronic transport calculations to a Boltzmann + Hydrodynamic hybrid approach with an intermediate hydrodynamic phase. For the hydrodynamic phase different Equations of State (EoS) have been employed, i.e. bag model, hadron resonance gas and a chiral EoS. The influence of various freeze-out scenarios has been investigated and shown to be negligible if hadronic rescatterings after the hydrodynamic evolution are included. Furthermore, first results of the source tilt from azimuthal sensitive HBT and the direct extraction from the transport model are presented and exhibit a very good agreement with E895 data at AGS.

- Collision energy evolution of elliptic and triangular flow in a hybrid model (2013)
- While the existence of a strongly interacting state of matter, known as “quark-gluon plasma” (QGP), has been established in heavy ion collision experiments in the past decade, the task remains to map out the transition from the hadronic matter to the QGP. This is done by measuring the dependence of key observables (such as particle suppression and elliptic flow) on the collision energy of the heavy ions. This procedure, known as "beam energy scan", has been most recently performed at the Relativistic Heavy Ion Collider (RHIC). Utilizing a Boltzmann+hydrodynamics hybrid model, we study the collision energy dependence of initial state eccentricities and the final state elliptic and triangular flow. This approach is well suited to investigate the relative importance of hydrodynamics and hadron transport at different collision energies.