### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (11)
- heavy ion collisions (9)
- Kollisionen schwerer Ionen (6)
- UrQMD (6)
- heavy ion collisions (6)
- Quark Gluon Plasma (4)
- Quark-Gluon-Plasma (4)
- Drell-Yan (3)
- QGP (3)
- Molekulare Dynamik (2)

#### Institute

- Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions (2004)
- We investigate hadron production as well as transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data on transverse mass spectra from pp, pA and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~5 A·GeV, furthermore, the measured K± transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. We investigate various scenarios to explore their potential effects on the K± spectra. In particular the initial state Cronin effect is found to play a substantial role at top SPS and RHIC energies. However, the maximum in the K+/..+ ratio at 20 to 30 A·GeV is missed by 40% and the approximately constant slope of the K± spectra at SPS energies is not reproduced either. Our systematic analysis suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential µq and temperature T- should be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.

- Unlike particle correlations and the strange quark matter distillation process (2002)
- We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.

- (Strange) meson interferometry at RHIC (2002)
- We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R out/R side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on K-Theta, are not unusually large and are strongly affected by momentum resolution effects.

- Kaon interferometry : a sensitive probe of the QCD equation of state? (2002)
- We calculate the kaon HBT radius parameters for high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma to a gas of hadrons. At high transverse momenta K_T ~ 1 GeV/c direct emission from the phase boundary becomes important, the emission duration signal, i.e., the R_out/R_side ratio, and its sensitivity to T_c (and thus to the latent heat of the phase transition) are enlarged. Moreover, the QGP+hadronic rescattering transport model calculations do not yield unusual large radii (R_i<9fm). Finite momentum resolution effects have a strong impact on the extracted HBT parameters (R_i and lambda) as well as on the ratio R_out/R_side.

- Particle correlations at RHIC - scrutiny of a puzzle (2002)
- We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- Pion interferometry at RHIC: probing a thermalized quark-gluon-plasma? (2001)
- We calculate the Gaussian radius parameters of the pion-emitting source in high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons. Such a model leads to a very long-lived dissipative hadronic rescattering phase which dominates the properties of the two-pion correlation functions. The radii are found to depend only weakly on the thermalization time tau i, the critical temperature T c (and thus the latent heat), and the specific entropy of the QGP. The dissipative hadronic stage enforces large variations of the pion emission times around the mean. Therefore, the model calculations suggest a rapid increase of R out/R side as a function of K T if a thermalized QGP were formed.

- Chemical freeze-out parameters at RHIC from microscopic model calculations (2001)
- The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/c. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio S/A = 150 - 170. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy square root s = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.

- Bremsstrahlung from a microscopic model of relativistic heavy ion collisions (2000)
- We compute bremsstrahlung arising from the acceleration of individual charged baryons and mesons during the time evolution of high-energy Au+Au collisions at the Relativistic Heavy Ion Collider using a microscopic transport model. We elucidate the connection between bremsstrahlung and charge stop- ping by colliding artificial pure proton on pure neutron nuclei. From the inten- sity of low energy bremsstrahlung, the time scale and the degree of stopping could be accurately extracted without measuring any hadronic observables. PACS: 25.75.-q, 13.85.Qk

- Global observables and secondary interactions in central Au+Au reactions at sqrt[s]=200A GeV (2000)
- The ultrarelativistic quantum molecular dynamics model (UrQMD) is used to study global observables in central reactions of Au+Au at sqrt[s]=200A GeV at the Relativistic Heavy Ion Collider (RHIC). Strong stopping governed by massive particle production is predicted if secondary interactions are taken into account. The underlying string dynamics and the early hadronic decoupling implies only small transverse expansion rates. However, rescattering with mesons is found to act as a source of pressure leading to additional flow of baryons and kaons, while cooling down pions.