## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Document Type

- Working Paper (75)
- Periodical Parts (1)

#### Keywords

- Lambda-Kalkül (18)
- Formale Semantik (8)
- Programmiersprache (7)
- Nebenläufigkeit (6)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)

#### Institute

- Informatik (75)
- Präsidium (1)

- 54
- Applicative may- and should-simulation in the call-by-value lambda calculus with amb (2014)
- Motivated by the question whether sound and expressive applicative similarities for program calculi with should-convergence exist, this paper investigates expressive applicative similarities for the untyped call-by-value lambda-calculus extended with McCarthy's ambiguous choice operator amb. Soundness of the applicative similarities w.r.t. contextual equivalence based on may-and should-convergence is proved by adapting Howe's method to should-convergence. As usual for nondeterministic calculi, similarity is not complete w.r.t. contextual equivalence which requires a rather complex counter example as a witness. Also the call-by-value lambda-calculus with the weaker nondeterministic construct erratic choice is analyzed and sound applicative similarities are provided. This justifies the expectation that also for more expressive and call-by-need higher-order calculi there are sound and powerful similarities for should-convergence.

- 53
- Contextual equivalence for the pi-calculus that can stop (2014)
- The pi-calculus is a well-analyzed model for mobile processes and mobile computations. While a lot of other process and lambda calculi that are core languages of higher-order concurrent and/or functional programming languages use a contextual semantics observing the termination behavior of programs in all program contexts, traditional program equivalences in the pi-calculus are bisimulations and barbed testing equivalences, which observe the communication capabilities of processes under reduction and in contexts. There is a distance between these two approaches to program equivalence which makes it hard to compare the pi-calculus with other languages. In this paper we contribute to bridging this gap by investigating a contextual semantics of the synchronous pi-calculus with replication and without sums. To transfer contextual equivalence to the pi-calculus we add a process Stop as constant which indicates success and is used as the base to define and analyze the contextual equivalence which observes may- and should-convergence of processes. We show as a main result that contextual equivalence in the pi-calculus with Stop conservatively extends barbed testing equivalence in the (Stop-free) pi-calculus. This implies that results on contextual equivalence can be directly transferred to the (Stop-free) pi-calculus with barbed testing equivalence. We analyze the contextual ordering, prove some nontrivial process equivalences, and provide proof tools for showing contextual equivalences. Among them are a context lemma, and new notions of sound applicative similarities for may- and should-convergence.

- 52
- Observational program calculi and the correctness of translations (2013)
- Motivated by our experience in analyzing properties of translations between programming languages with observational semantics, this paper clarifies the notions, the relevant questions, and the methods, constructs a general framework, and provides several tools for proving various correctness properties of translations like adequacy and full abstractness. The presented framework can directly be applied to the observational equivalences derived from the operational semantics of programming calculi, and also to other situations, and thus has a wide range of applications.

- 51 [ver. 2]
- Extending Abramsky's lazy lambda calculus: (non)-conservativity of embeddings (2013)
- Our motivation is the question whether the lazy lambda calculus, a pure lambda calculus with the leftmost outermost rewriting strategy, considered under observational semantics, or extensions thereof, are an adequate model for semantic equivalences in real-world purely functional programming languages, in particular for a pure core language of Haskell. We explore several extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors and case-expressions, and their combination, focusing on conservativity of these extensions. In addition to untyped calculi, we study their monomorphically and polymorphically typed versions. For most of the extensions we obtain non-conservativity which we prove by providing counterexamples. However, we prove conservativity of the extension by data constructors and case in the monomorphically typed scenario.

- 51
- Extending Abramsky's lazy lambda calculus: (non)-conservativity of embeddings (2013)
- Our motivation is the question whether the lazy lambda calculus, a pure lambda calculus with the leftmost outermost rewriting strategy, considered under observational semantics, or extensions thereof, are an adequate model for semantic equivalences in real-world purely functional programming languages, in particular for a pure core language of Haskell. We explore several extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors and case-expressions, and their combination, focusing on conservativity of these extensions. In addition to untyped calculi, we study their monomorphically and polymorphically typed versions. For most of the extensions we obtain non-conservativity which we prove by providing counterexamples. However, we prove conservativity of the extension by data constructors and case in the monomorphically typed scenario.

- 50
- Correctness of an STM Haskell implementation (2012)
- A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.

- 50 [v.2]
- Correctness of an STM Haskell implementation (2013)
- A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.

- 49
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2012)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 49 [v.2]
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2013)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 48
- An abstract machine for concurrent Haskell with futures (2012)
- We show how Sestoft’s abstract machine for lazy evaluation of purely functional programs can be extended to evaluate expressions of the calculus CHF – a process calculus that models Concurrent Haskell extended by imperative and implicit futures. The abstract machine is modularly constructed by first adding monadic IO-actions to the machine and then in a second step we add concurrency. Our main result is that the abstract machine coincides with the original operational semantics of CHF, w.r.t. may- and should-convergence.