## Frankfurter Informatik-Berichte

- 01, 4
- Descriptional complexity of cellular automata and decidability questions (2001)
- We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata.

- 02, 6
- Minimizing finite automata is computationally hard (2002)
- It is known that deterministic finite automata (DFAs) can be algorithmically minimized, i.e., a DFA M can be converted to an equivalent DFA M' which has a minimal number of states. The minimization can be done efficiently [6]. On the other hand, it is known that unambiguous finite automata (UFAs) and nondeterministic finite automata (NFAs) can be algorithmically minimized too, but their minimization problems turn out to be NP-complete and PSPACE-complete [8]. In this paper, the time complexity of the minimization problem for two restricted types of finite automata is investigated. These automata are nearly deterministic, since they only allow a small amount of non determinism to be used. On the one hand, NFAs with a fixed finite branching are studied, i.e., the number of nondeterministic moves within every accepting computation is bounded by a fixed finite number. On the other hand, finite automata are investigated which are essentially deterministic except that there is a fixed number of different initial states which can be chosen nondeterministically. The main result is that the minimization problems for these models are computationally hard, namely NP-complete. Hence, even the slightest extension of the deterministic model towards a nondeterministic one, e.g., allowing at most one nondeterministic move in every accepting computation or allowing two initial states instead of one, results in computationally intractable minimization problems.

- 03, 1
- On one-way cellular automata with a fixed number of cells (2003)
- We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA.

- 03, 3
- On the descriptional complexity of iterative arrays (2003)
- The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable.

- 03, 2
- On two-way communication in cellular automata with a fixed number of cells (2003)
- The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k.

- 04, 2
- On non-recursive trade-offs between finite-turn pushdown automata (2004)
- It is shown that between one-turn pushdown automata (1-turn PDAs) and deterministic finite automata (DFAs) there will be savings concerning the size of description not bounded by any recursive function, so-called non-recursive tradeoffs. Considering the number of turns of the stack height as a consumable resource of PDAs, we can show the existence of non-recursive trade-offs between PDAs performing k+ 1 turns and k turns for k >= 1. Furthermore, non-recursive trade-offs are shown between arbitrary PDAs and PDAs which perform only a finite number of turns. Finally, several decidability questions are shown to be undecidable and not semidecidable.

- 05, 3
- Deciding the FIFO stability of networks in polynomial time (2005)
- FIFO is the most prominent queueing strategy due to its simplicity and the fact that it only works with local information. Its analysis within the adversarial queueing theory however has shown, that there are networks that are not stable under the FIFO protocol, even at arbitrarily low rate. On the other hand there are networks that are universally stable, i.e., they are stable under every greedy protocol at any rate r < 1. The question as to which networks are stable under the FIFO protocol arises naturally. We offer the first polynomial time algorithm for deciding FIFO stability and simple-path FIFO stability of a directed network, answering an open question posed in [1, 4]. It turns out, that there are networks, that are FIFO stable but not universally stable, hence FIFO is not a worst case protocol in this sense. Our characterization of FIFO stability is constructive and disproves an open characterization in [4].

- 07, 1
- Sublinearly space bounded iterative arrays (2007)
- Iterative arrays (IAs) are a, parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this note, realtime-lAs with sublinear space bounds are used to accept formal languages. The existence of a proper hierarchy of space complexity classes between logarithmic anel linear space bounds is proved. Furthermore, an optimal spacc lower bound for non-regular language recognition is shown. Key words: Iterative arrays, cellular automata, space bounded computations, decidability questions, formal languages, theory of computation

- 08, 1
- The effects of local randomness in the adversarial queueing model (2008)
- We study the effect of randomness in the adversarial queueing model. All proofs of instability for deterministic queueing strategies exploit a finespun strategy of insertions by an adversary. If the local queueing decisions in the network are subject to randomness, it is far from obvious, that an adversary can still trick the network into instability. We show that uniform queueing is unstable even against an oblivious adversary. Consequently, randomizing the queueing decisions made to operate a network is not in itself a suitable fix for poor network performances due to packet pileups.

- 09, 1
- Real-valued feature selection for process approximation and prediction (2009)
- The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the Rènyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features.