The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 11 of 7396
Back to Result List

Cyclic GMP-dependent protein kinase Iα attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte

  • Cyclic GMP-dependent protein kinases protein kinase G (PKG) Iα and PKGIβ are major mediators of cGMP signaling in the cardiovascular system. PKGIα is present in the heart, although its role in protection against ischemia/reperfusion injury is not known. We investigated the direct effect of PKGIα against necrosis and apoptosis following simulated ischemia (SI) and reoxygenation (RO) in cardiomyocytes. Adult rat cardiomyocytes were infected with adenoviral vectors containing hPKGIα or catalytically inactive mutant hPKGIαK390A. After 24 h, the cells were subjected to 90 min of SI and 2 h RO for necrosis (trypan blue exclusion and lactate dehydrogenase release) or 18 h RO for apoptosis studies. To evaluate the role of KATP channels, subgroups of cells were treated with 5-hydroxydecanoate (100 μm), HMR1098 (30 μm), or glibenclamide (50 μm), the respective blockers of mitochondrial, sarcolemmal, or both types of KATP channels prior to SI. The necrosis observed in 33.7 ± 1.6% of total myocytes in the SI-RO control group was reduced to 18.6 ± 0.8% by PKGIα (mean ± S.E., n = 7, p < 0.001). The apoptosis observed in 17.9 ± 1.3% of total myocytes in the SI-RO control group was reduced to 6.0 ± 0.6% by PKGIα (mean ± S.E., n = 7, p < 0.001). In addition, PKGIα inhibited the activation of caspase-3 after SI-RO in myocytes. Myocytes infected with the inactive PKGIαK390A mutant showed no protection. PKGIα enhanced phosphorylation of Akt, ERK1/2, and JNK, increased Bcl-2, inducible nitric-oxide synthase, endothelial nitric-oxide synthase, and decreased Bax expression. 5-Hydroxydecanoate and glibenclamide abolished PKGIα-mediated protection against necrosis and apoptosis. However, HMR1098, had no effect. A scavenger of reactive oxygen species, as well as inhibitors of phosphatidylinositol 3-kinase, ERK, JNK1, and NOS, also blocked PKGIα-mediated protection against necrosis and apoptosis. These results show that opening of mitochondrial KATP channels and generation of reactive oxygen species, in association with phosphorylation of Akt, ERK, and JNK, and increased expression of NOS and Bcl-2, play an essential role in the protective effect of PKGIα.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anindita DasORCiD, Albert SmolenskiORCiDGND, Suzanne M. Lohmann, Rakesh C. KukrejaORCiD
URN:urn:nbn:de:hebis:30:3-762486
DOI:https://doi.org/10.1074/jbc.M606142200
ISSN:0021-9258
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/17038326
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/04/20
Volume:281.2006
Issue:50
Page Number:9
First Page:38644
Last Page:38652
Institutes:Medizin
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International