• search hit 73 of 212
Back to Result List

Dynamical screening of an endohedral atom

  • Fullerene, Nanoröhren und auch anderen hohlen Strukturen können Atome oder Moleküle in ihrem Inneren einschliessen. In solchen Systemen beeinflussen sich die einschliessenden und eingeschlossenen Strukturen gegenseitig, und es existiert eine Vielzahl unterschiedlicher Effekte: Änderungen der Energieeigenwerte, Änderungen der Elektronenstruktur sowie Ladungsaustausch zwischen den beiden Teilen des Systems. All diese Effekte beeinflussen die Absorbtionsspektren beider Systembestandteile. In dieser Arbeit liegt der Schwerpunkt auf einem dieser Effekte: Dem dynamischen Abschirmungseffekt. Den dynamischen Abschrimungseffekt findet man insbesondere bei solchen Systemen, bei denen die einschliessende Struktur viele delokalisierte Elektronen besitzt. Zu solchen Systemen gehören zum Beispiel endohedrale Komplexe sowie "Nano Peapods" (Nanoröhren mit eingeschlossenen Atomen oder Molekülen). Ursächlich für den dynamischen Abschirmungseffekt ist die Tatsache, dass die Elek- tronen des umschliessenden Käfigs die eingeschlossene Struktur gegen elektromagentische Wellen abschirmen. Mit anderen Worten: Dass das elektrische Feld sowohl innerhalb als auch ausserhalb der einschliessenden Struktur wird vom polarisierenden Feld der einschliessenden Struktur beein°usst. Klassisch betrachtet ist die Photoabsorbtionsrate eines Objektes proportional zu der Intensität eines elektrischen Feldes. Somit unterscheidet sich die Photoabsorbtionsrate (und auch der Wirkungsquerschnitt) der gleichen elektromagnetischen Welle einer Struktur innerhalb eines Einschlusses von der Photoabsorbtionsrate eines freien Atoms oder Moleküls. Der dynamische Abschirmungsfaktor dient als Beschreibung des Verhältnisses dieser beiden Wirkungsfaktoren. Darüber hinnaus können, da die Käfigstruktur viele delokalisierte Elektronen besitzt, Elektronen gemeinsam angeregt werden und somit Plasmons hervorrufen. Wenn sich die Frequenz der anregenden elektromagentischen Strahlung der Resonanzfrequenz dieser Plasmonen annähert, wird das polarisierende Feld besonders gross. Im Endeffekt beobachtet man nahe der Plasmon-Frequenz einen starken Anstieg des Wirkungsquerschnittes der eingeschlossenen Struktur. Der Schwerpunkt in dieser Arbeit liegt auf einer spezifischen Art von System: Endo- hedrale Komplexe. Diese Strukturen wurden mit einem klassichen Ansatz untersucht. Die Fullerene wurden, da sie viele delokalisierte Elektronen besitzen als dielektrische Schalen modelliert, mit der dielektrischen Funktion eines freien Elektronengases. Dabei ist der dynamische Abschrimfaktor durch Auswertung des gesamten elektrischen Feldes am Ort des Atoms im Vergleich zur Stärke des externen elektrischen Feldes definiert. Der dynamische Abschrimungsfaktor wurde für eine Vielzahl unterschiedlicher Situationen untersucht. Im einfachsten Fall, bei dem die Polarisierbarkeit des eingeschlossenen Atoms vernachlässigbar klein ist, ist der dynamische Abschirmfaktor unabhängig von der Position des Atoms innerhalb des Fullerens. Die Veranderung des elektrischen Feldes wird vollständig von der dynamischen Reaktion des Fullerens auf das externe Feld bestimmt. Da das Fulleren von endlicher Dicke ist (definiert duch die räumliche Ausdehnung der Elektronenwolke), besitzt es zwei Oberflächen. Die Wirkung der elektromagnetischen Welle induziert oszillierende Oberflächen-Ladungs-Dichten. Die Oberflächen-Ladungs-Dichten wechselwirken und erzeugen somit zwei Plasmon Eigenmoden: eine symmetrische Mode bei der beide Ladungsdichten in Phase oszillieren und eine antisymmetrische bei denen sie gegen-phasig oszillieren. Der dynamische Abschirmfaktor eines solchen eingeschlossenen Atoms zeigt zwei ausgeprägte Peaks, welche eine Manifestation dieser beiden Oberflächen-Plasmone sind. Die Wechselwirkung zwischen diesen Plasmon-Moden wurde untersucht. Darüber hinnaus wurde der Einfluss der Grösse des Käfigs untersucht; mit Fallbeispielen für C20, C60, C240 und C960 [2, 3]. Im Grenzfall eines unendlich dünnen Fulleren-Käfigs ist nur ein einelnes Oberflächen-Plasmon zu beachten. Als nächstes wurde der Einfluss des eingeschlossenen Atoms untersucht [3{5]. Wenn dessen Polarisierbarkeit gross ist, wird ein reziproker Einfluss des Dipol-Moments des Atoms auf das Fulleren messbar. Dies wurde zunächst unter der Annahme eines zentral angeodneten Atoms für die folgenden drei Fälle untersucht: Ar@C60, Xe@C60 and Mg@C60. Der dynamische Abschirmfaktor verÄanderte sich dabei nur wenig. Der stärkste Einfluss auf das Verhalten des Abschirmfaktors ensteht durch Unstetigkeiten in der Polarisierbarkeit des Atoms nahe dessen Ionisierungs-Schwelle. Die Wahl dieser drei Fallstudien ist durch die quantenmechanischen Berechnungen von [7-9] motiviert. Der Vergleich mit diesen Berechnungen zeigt hohe Übereintismmungen für Ar@C60 und Xe@C60. Allerdings fanden sich auch grosse Unterschiede für Mg@C60, vor allem bei niedriger Photonen-Energie. Das Fulleren besitzt zwei Arten von Valenzelektronen: Die ¼-Elektronen und die stärker gebundenen ¾-Elektronen. Dies führt zum Auftreten zweier Oberflächen-Plasmons in Fullerenen. Dabei ist allgemein bekannt, dass das Buckminster-Fulleren ein Plasmon nahe 8 eV, sowie ein deutlich größeres nahe 20 eV besitzt. Diese sind mit den ¼-Elektronen, respektive den ¾-Elektronen verknüpft (auch wenn ¼-Elektronen zusÄatzlich zu dem ¾-Plasmon beitragen). Aufgrund dieser Tatsache wäre es angemessener, die Valenzelektronen nicht als Ein-, sondern als Zwei-Komponenten-Elektronen-Gas zu behandeln. Um dies miteinzubeziehen, passten wir unser Modell dahingehend an, dass wir das Fulleren als zwei unabhängige kozentrische dielektrische Schalen simulieren. Die Valenzelektronen wurden so auf die zwei Schalen aufgeteilt, dass eine Schlale alle Elektronen enthielt, die Teil des ¼{Plasmons sind, und die andere alle Beteiligten am ¾{Plasmon [4, 5]. Der Vergleich dieses modifizierten Modelles mit den quanten{mechanischen Berechnungen zeigte eine deutlich verbesserte Übereintismmung der Ergebnisse. Alle Merkmale der Berechnungen, vor allem das deutliche Maximum nahe 10 eV bei Mg@C60, konnten reproduziert und damit erklärt werden. Bedingt durch die endliche Dicke der Fulleren-Schale spalten jeder der beiden Plasmonen in jeweils zwei Plasmon Eigenmoden auf. Daher zeigt der dynamische Abschirm-Faktor nun vier Haupt{Eigenschaften welche die vier Plasmon-Moden abbilden. Nichtsdestotrotz zeigen sich immer noch quantitative Unterschiede im Falle von Mg@C60. Fürr Ar@C60 und Xe@C60, bei welchen das ursprÄungliche Modell bereits gute Fits zeigte, werden diese Fits durch die Anpassungen im Modell sogar noch verbessert. Interessanterweise zeigen sich die größten Veränderungen des dynamischen Abschirm-Faktors bei niedrigen Photonen{Energien, also im Bereich des ¼-Plasmons. Betrachtet man den Querschnitt dieses Fulleren Modells, so zeigt der Querschnitt Eigenschaften die den vier Ober°Äachen{Plasmon{Moden des Fullerens zugeordnet werden. Vergleicht man dies mit anderen theoretischen Arbeiten [12] und einer Sammlung verschiedener experimenteller Messungen [10], so zeigt sich, dass alle SchlÄussel{Eigenschaften des Querschnittes in unserem Modell vorhanden sind. Abschlie¼end wurde die Abhängigkeit des dynamische Abschirm-Faktors von der Position des endohedralen Atoms innerhalb des Fullerens anhand zweier Fallstudien, Ar@C60 und Ar@C240 [3, 4], untersucht. Die Ergebnisse zeigen, dass der dynamische Abschirmfaktor relativ unempfindlich gegenüber Veränderung des Positions-Winkels des Atoms ist. Die radiale Position hingegen stellte sich als sehr wichtig heraus. Je mehr sich das Atom der Fulleren-Hülle nähert, desto grösser wird der dynamische Abschirmfaktor. Diese Studien zeigen, dass es notwendig ist, eine Art räumlichen Mittelwertes für den dynamische Abschirmfaktor zu bestimmen, um sichtbare Resultate zu erhalten. Im Rahmen dieser Arbeit wurde daher eine Methode für solch einen Mittelwert entwickelt [3, 4]. Neben der Untersuchung des dynamische Abschirm-Faktors wurde auch ein Vergleich mit experimentellen Messungen erarbeitet. Im Falle von Ce@C82 war die Photon{Energiespanne sehr hoch, weit über der Plasmon-Energie des Fullerens. Das Fulleren sollte daher für eine solche Bestrahlung durchlässig sein, und daher würde man keinen dynamischen Abschirmungs-Effekt finden können. Der Vergleich für Sc3N@C80 ist komplizierter. Da es sich dabei um ein rein klassisches Modell handelt, muss man achtgeben, es nicht mit dem vollständig freien Komplex zu vergleichen, sondern zusätzlich quanten{mechanische Effekte aus Confinements, wie zum Beispiel Elektronen{Transfers, miteinzubeziehen. Zudem ist das aktuelle Modell zu dynamischer Abschirmung nicht für Moleküle, sondern nur für einzelen Atomeentwickelt worden. Ein erster naiver Vergleich, in welchem der Endohedrale Komplex als Pseudo{Atom modelliert wurde, konnte die breite Struktur der experimentellen Ergebnisse nicht wiedergeben. Berechnungen des dynamischen Abschirmfaktors und des daraus resultierenden Querschnittes für ein einzelnes Scandium{Ion zeigte, dass auch räumliches Mitteln nicht ausreicht um die experi-mentellen Beobachtungen erklären zu können. Die Anwesenheit des Fullerens führt zur Öffnung eines neuen Kanals innerhalbdes Auger Prozesses [6, 11] und damit zur Verbreiterung der atomaren Spektrallinienweite. Berücksichtigt man diesen Effekt, so kann die ÄAhnlichkeit zu den experimentellen Ergebnissen deutlich erhöht werden. Allerdings ist es wichtig dabei auch die räumlichen Abhängigkeiten des Effekts, wie auch die der dynamischen Abschirmung, zu beachten. Erste vorläufige Ergebnisse deuten an, dass die beiden genannten Effekte, zumindest teilweise, dabei helfen können, die experimentell gefunden Ergebnisse zu erklären. Unser Modell zur Berechnung des dynamischen Abschirmfaktors liefert eine detaillierte Beschreibung und mögliche Erklärungen der diskutierten Phänomene, welche über die bisherige Arbeiten in der theoretischen Literatur hinausgehen. Die wichtigen Eigenschaften der experimentellen Arbeiten konnten mit dem Modell reproduziert werden, und mit der Verbreiterung der atomaren Spektrallinienweite und der dynamischen Abschirmung konnten wir zwei Effekte als mögliche bisher nicht berücksichtigete Erklärungen für einige dieser Eigenschaften herausarbeiten.
  • The photoabsorption rate (and cross section) of an object confined within an object with a significant number of delocalised electrons can be greatly enhanced if the electromagnetic radiation has a frequency close to a plasmon resonance frequency of the confining object [1]. This is the dynamical screening effect. This effect has been studied for the system of an atom encapsulated within a fullerene, the endohedral atom, where the fullerene is roughly spherical. On can define a dynamical screening factor to relate the photoabsorption cross section of the free atom to that of the confined atom. For a fullerene of finite thickness there are two coupled surface plasmon modes. Therefore, the profile of the dynamical screening factor has two main peaks, each being the manifestation of a plasmon mode. Consequently, there are two frequency ranges within which the endohedral atom experiences a large enhancement of its photoabsorption rate [2, 3]. In accounting for the mutual influence between the atom and the fullerene, the dynamical screening factor becomes dependent on the position of the encapsulated atom inside the cage [3]. Case studies on centrally positioned atom { Ar@C60, Xe@C60 and Mg@C60 {reveals that the nature of the endohedral atom, encoded through its dynamic dipole polarizability, can play an important role in the dynamical screening effect. Comparisons with other theoretical work showed the need to account for the two types of valence electrons of the fullerene - the ¾ electron and the more tightly bound ¼ electrons - when considering lower photon energies [4]. The photoabsorption cross section of this modified fullerene model was also calculated and compared with other theoretical and experimental works, showing a good qualitative agreement [5]. The spatial dependence of the dynamical screening factor was explored via two case studies: Ar@C60 and Ar@C240. The factor is rather insensitive to the angular coordinate of the confined atom (with respect to the direction of the applied field). However, the radial position of the atom is significant, with the factor being much larger when the atom is located near the confining shell. A method of averaging the factor over all possible positions of the atom has been introduced [3, 4]. Preliminary comparisons with the experimental photoionization cross section of Sc3N@C80 shows that the dynamical screening effect on its own cannot explain those results. Accounting for the broadening of linewidths, which result from the opening of a new Auger decay channel for the endohedral atom, together with the dynamical screening effect may be able to explain the experimental observations [6].

Download full text files

  • Dynamical_Screening_of_an_Endohedral_Atom.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stephanie G. Lo
URN:urn:nbn:de:hebis:30-86980
Referee:Walter GreinerGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/12/15
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/07/28
Release Date:2010/12/15
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:421454229
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG