Spectral densities of the τ lepton in a global U(2)L × U(2)R linear sigma model with electroweak interaction

  • This work is dedicated to the study of the vector and axial vector spectral functions of the τ lepton within the framework of a U(2)L × U(2)R Linear Sigma Model with electroweak interaction. As an effective field theory the Linear Sigma Model describes hadronic degrees of freedom based on the symmetries of the Standard Model. Therefore, the following section aims at giving a very general and concise introduction to the Standard Model and the meaning of symmetries for contemporary elementary particle physics. In the next section the SU(3)C symmetry group will be discussed in short, followed by an introduction to chiral symmetry SU(2)L × SU(2)R. In the last section of this chapter the Glashow-Weinberg-Salam theory of the local group SU(2)L × U(1)Y is presented. Important concepts of the theoretical framework of the Standard Model, such as the Noether Theorem, the Gauge Principle, Spontaneous Symmetry Breaking, and the Higgs Mechanism will be introduced in the context of these three symmetry groups. In Chapter 2 it will be first shown how the symmetries of the Standard Model are realised within the global U(2)L × U(2)R Linear Sigma Model and how electroweak interactions can be introduced to the model on the basis of local SU(2)L × U(1)Y symmetry transformations of the hadronic degrees of freedom. The vertices that are relevant for the vector and axial vector decay channels in weak τ decay are extracted from the Lagrangian with electroweak interaction in Chapter 3. This is followed by a short introduction to the Källen-Lehmann Representation of spectral functions and how these can be parametrised within the framework of this model (Chapter 4). The results of the vector and axial vector spectral functions are presented in Chapter 5 and 6.

Download full text files

  • anja.pdf

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Anja Habersetzer
Document Type:diplomthesis
Year of Completion:2011
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/29
Page Number:123
Last Page:120
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG