Functional hemispheric asymmetries during the planning and manual control of virtual avatar movements

  • Both hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere’s specialization for visuospatial processing is well-documented in perceptual tasks. This study operationalized temporal and spatial processing demands during visuomotor processing and investigated hemispheric asymmetries in neural activation during the unimanual control of a visual cursor by grip force. Functional asymmetries were investigated separately for visuomotor planning and online control during functional magnetic resonance imaging in 19 young, healthy, right-handed participants. The expected cursor movement was coded with different visual trajectories. During planning when spatial processing demands predominated, activity was right-lateralized in a hand-independent manner in the inferior temporal lobe, occipito-parietal border, and ventral premotor cortex. When temporal processing demands overweighed spatial demands, BOLD responses during planning were left-lateralized in the temporo-parietal junction. During online control of the cursor, right lateralization was not observed. Instead, left lateralization occurred in the intraparietal sulcus. Our results identify movement phase and spatiotemporal demands as important determinants of dynamic hemispheric asymmetries during visuomotor processing. We suggest that, within a bilateral visuomotor network, the right hemisphere exhibits a processing preference for planning global spatial movement features whereas the left hemisphere preferentially times local features of visual movement trajectories and adjusts movement online.
Metadaten
Author:Mareike Floegel, Christian Alexander KellORCiDGND
URN:urn:nbn:de:hebis:30:3-438044
DOI:https://doi.org/10.1371/journal.pone.0185152
ISSN:1932-6203
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/28957344
Parent Title (English):PLoS one
Publisher:PLoS
Place of publication:Lawrence, Kan.
Contributor(s):Lutz Jäncke
Document Type:Article
Language:English
Date of Publication (online):2017/10/05
Date of first Publication:2017/09/28
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2017/10/05
Volume:12
Issue:(9): e0185152
Page Number:25
First Page:1
Last Page:25
Note:
Copyright: © 2017 Floegel, Kell. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
HeBIS-PPN:41978666X
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0