Understanding the neural mechanisms of emotion-cognition interaction via high resolution mapping in space, time, frequency, and information transfer
- Human behaviour is inextricably linked to the interaction of emotion and cognition. For decades, emotion and cognition were perceived as separable processes, yet with mutual interactions. Recently, this differen-tiation has been challenged by more integrative approaches, but without addressing the exact neurophysiological basis of their interaction. Here, we aimed to uncover neurophysiological mechanisms of emotion-cognition interaction. We used an emotional Flanker task paired with EEG/FEM beamforming in a large cohort (N=121) of healthy human participants, obtaining high temporal and fMRI-equivalent spatial resolution. Spatially, emotion and cognition processing overlapped in the right inferior frontal gyrus (rIFG), specifically in pars triangularis. Temporally, emotion and cognition processing overlapped during the transition from emotional to cognitive processing, with a stronger interaction in β-band power leading to worse behavioral performance. Despite functionally segregated subdivisions in rIFG, frequency-specific information flowed extensively within IFG and top-down to visual areas (V2, Precuneus) – explaining the behavioral interference effect. Thus, for the first time we here show the neural mechanisms of emotion-cognition interaction in space, time, frequency and information transfer with high temporal and spatial resolution, revealing a central role for β-band activity in rIFG. Our results support the idea that rIFG plays a broad role in both inhibitory control and emotional interference inhibition as it is a site of convergence in both processes. Furthermore, our results have potential clinical implications for understanding dysfunctional emotion-cognition interaction and emotional interference inhibition in psychiatric disor-ders, e.g. major depression and substance use disorder, in which patients have difficulties in regulating emotions and executing inhibitory control.