Three dimensional structure of the light-harvesting chlorophyll a/b protein complex from plant chloroplasts

  • The light-harvesting chlorophyll a/b protein complex (LHC-II) is the major collector of solar energy in all plants and it binds about half of the chlorophyll in green plants. LHCII is a trimer in the photosynthetic membrane; each monomer consists of 232 amino acids, binds and orients a minimum of 12 chlorophyll molecules and three caroteinoids (two luteins and one neoxanthin) for light-harvesting and energy transfer. Although, the structure of LHC-II has been determined at 3.4 Å resolution by electron microscopy of two-dimensional crystals (Kühlbrandt et al., 1994), this is not sufficient to allow a complete understanding of the mechanism of energy transfer from LHC-II to the reaction centre, since the effective resolution in the z dimension is 4.9 Å. In fact, the chemical difference between Chl a and Chl b, which has a formyl group instead of the methyl group at the 7-position in the chlorin ring, is too small to be detected at this level of resolution. In addition, the orientation of the chlorophyll tetrapyrroles have not been determined unambiguously. This information is essential for a detailed understanding of the energy transfer within the complex and to the reaction centres of photosystem II and I (PSII and PSI). X-ray crystallography of three dimensional (3D) crystals may yield a more complete structure at high resolution. 3D crystals have been grown from LHC-II isolated from pea leaves using a standard purification procedure (Burke et al., 1978). The thylakoid membranes are solubilised in Triton X-100 and further purified by sucrose gradient ultra centrifugation. The LHC-II fraction is salt precipitated and pellets resuspended at the chlorophyll a/b ratio 2.8 mg/ml in 0.9 % Nonyl-glucoside. Crystals are currently obtained by vapour diffusion in hanging drops. These crystals are thin hexagonal plates, have a fairly large unit cell and diffract quite weakly. The high level of the background is due both to the detergent, necessary for protein solubilisation, and lipids, required for the trimer and crystals formation. However, three data sets, each from one single crystal have been collected up to 3.2 Å resolution over a rotation range of 135°. The crystals were exposed to a very highly collimated and brilliant beam (ID-14 EH1 at ESRF, Grenoble, France) and were kept under a stream of cold nitrogen to prevent radiation damage. Data were successfully integrated using the program XDS by Kabsch (1993). The crystals were found to belong to the space group P6 22 3 and have unit cell dimensions of a=128.45, b=128.45, c=135.32, a= ß=90º, ?=120. The solution of the phase problem was tackled by molecular replacement using, as a search model, the LHC-II structure solved by electron cryo-microscopy studies of twodimensional crystals (Kühlbrandt et al. 1994). Three different programs were tested: the most used AMoRe (Navaza et al., 1994) and the brute force based program Brute (Fujinaga

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Matteo Lamborghini
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Date of Publication (online):2003/07/10
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/08/23
Release Date:2003/07/10
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht