570 Biowissenschaften; Biologie
Refine
Year of publication
Document Type
- Article (3570)
- Doctoral Thesis (1328)
- Book (362)
- Part of Periodical (346)
- Preprint (225)
- Review (101)
- Contribution to a Periodical (63)
- Part of a Book (25)
- Periodical (19)
- Conference Proceeding (15)
Language
- English (3198)
- German (2741)
- French (68)
- Latin (36)
- Multiple languages (17)
- dut (16)
- Italian (3)
- Danish (2)
- Portuguese (2)
- mis (1)
Keywords
- RNA (23)
- aging (20)
- taxonomy (20)
- SARS-CoV-2 (19)
- biodiversity (19)
- Biodiversität (18)
- inflammation (18)
- Podospora anserina (17)
- mitochondria (17)
- Biochemistry (16)
Institute
- Biowissenschaften (1655)
- Biochemie und Chemie (806)
- Medizin (489)
- Biochemie, Chemie und Pharmazie (416)
- Institut für Ökologie, Evolution und Diversität (187)
- Senckenbergische Naturforschende Gesellschaft (170)
- MPI für Biophysik (148)
- Biodiversität und Klima Forschungszentrum (BiK-F) (135)
- Physik (131)
- Exzellenzcluster Makromolekulare Komplexe (121)
High-resolution mapping of cell cycle dynamics during T-cell development and regeneration in vivo
(2024)
Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known on how stage-specific alterations in cell cycle behavior drive proliferation dynamics during T-cell development. Here, we employed in vivo dual-nucleoside pulse labeling combined with determination of DNA replication over time as well as fluorescent ubiquitination-based cell cycle indicator mice to establish a quantitative high-resolution map of cell cycle kinetics of thymocytes. We developed an agent-based mathematical model of T-cell developmental dynamics. To generate the capacity for proliferative bursts, cell cycle acceleration followed a ‘stretch model’, characterized by simultaneous and proportional contraction of both G1 and S phase. Analysis of cell cycle phase dynamics during regeneration showed tailored adjustments of cell cycle phase dynamics. Taken together, our results highlight intrathymic cell cycle regulation as an adjustable system to maintain physiologic tissue homeostasis and foster our understanding of dysregulation of the T-cell developmental program.
The main goal of this work is to contribute to the existing knowledge of soil micro-fungi in Panama and Germany. Studies about soil degradation and its influents in the soil fungi diversity have not been investigated as extensively in these countries. This is an extensive and challenging topic to examine since there is an immense phenotypic and genetic diversity in the soil fungal community and relating this community together with factors of soil degradation is an extensive task. For this reason, the present thesis studies the species identified in the study areas, in other words, the soil fungal diversity in relation to environmental factors in the Taunus Mountain range in Frankfurt, Germany, and in the Majagua valley in Chiriquí, Panama. Two complementary objectives were achieved, the first was the development of a theoretical irrigation model for degraded soils. The second was the development of a mobile application to facilitate laboratory work in the cultivation of soil micro-fungi.
The design of the methodology was based on identifying the species and relating the diversity found to soil factors. Soil samples were taken in both countries: the Taunus Mountain range was sampled eight times from January to November 2012 and the Majagua valley was sampled on three occasions between February and July 2012. In both studies, the areas included three different vegetation types (forest, grassland, and bare soil). Samples were separated for two purposes: the assessment of fungal diversity by molecular and morphological methods and soil characterization.
Soil samples used in the methodology of pyrosequencing were related to global climatic factors. Morphological identification was achieved with identification keys. Micro-fungi were cultivated in different media until obtaining pure cultures. Molecular identification was performed by getting the DNA sequences using the ITS1 and ITS4 primers and comparing the sequences with other reference sequences from GenBank. This was done considering the BLAST algorithm, which considered sequences that matched 98 % or more of maximum identity as reliable identifications.
Soil characterization was carried out to measure the soil's Physico-chemical properties; those abiotic factors were compaction, temperature, pH, moisture, and soil composition.
Species richness was calculated in each study area with the estimators Chao, Jackknife, and Bootstrap. Furthermore, the species accumulation curves were performed to observe the species discovery rate and estimate sample completeness. Estimate linear regression models correlated the influence between the soil factors (temperature, moisture, pH, soil compaction, and soil composition) and the species richness. In the same way, an analysis of ecological distance was undertaken based on the similarity in the species composition, compared across samples, and correlated with soil factors, using non-metric multidimensional scaling (NMDs).
Study of abundance showed differences between the bare soil abundances and the forest abundances in Germany and Panama; the grasslands in both countries work as transitional areas in the fungi abundance. The key stone species in Germany were Penicillium daleae, and Pochonia bulbillosa, whereas in Panama were Purpureocillium lilacinum and Trichoderma harzianum. Based on Pareto analysis, a theoretical irrigation model was developed to counteract the degradation effects on the abundance of micro-fungi in the soil.
Applications for mobile devices dealing with the cultivation of soil micro fungi were sought. Due to the small number of existing applications, a new App called Soil-Fungi-Cultures (SFC) was developed to facilitate data collection of cultivated soil micro fungi. App Inventor was the program used to design, program, test, and publish the application developed. The developed application was compared with other applications used in identifying bacteria cultures. The results showed that the new application needed more time to capture the records because it saves more information, the navigation flow was acceptable, the number of clicks was high, but it is due to the usefulness in data capture, and finally, the users rated it as a good application with an eight out of ten rating.
Pyrosequencing resulted in 204 Operational Taxonomic Units (OTUs) considering the two study areas (the Taunus Mountain range and the Majagua valley). The Pyrosequencing database was used to contribute to the most important study of fungal diversity globally based on OTUs, which surpasses any study of molecular and taxonomic diversity previously conducted. The principal result in this study was that the climatic factor is the best predictor of fungal richness and community composition on a global scale. However, the part of the research that focused on the local scale, that is to say, on the correlation patterns between the distribution of fungal species and abiotic factors, showed that the soil properties and degradation levels were not associated with fungal richness, diversity or soil composition in the study areas in Germany or Panama. The above confirms that there are exceptions to the way relationships between soil factors with fungal diversity are established at the local level.
In the case of soil samples used for morphological identification, 71 fungal species were obtained, 47 from Germany, and 32 from Panama.
The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and suggest a unified concept of ageing may exist in different life forms.
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and suggest a unified concept of ageing may exist in different life forms.
Protein oxidation results from the reaction of amino-acid side chains with reactive oxygen species (ROS) and is partly irreversible. In non-photosynthetic tissues, mitochondria are a main source of ROS, whereas plastids are the major source in photosynthetic tissues. Oxidized proteins suffer from decreased structural integrity and even loss of function, and their accumulation leads to cytotoxic aggregates. In mammals, aggregate formation correlates with aging and is linked to several age-related pathologies. Mammalian proteolytic pathways for clearance of oxidized proteins are under intensive research, while mechanistic insights into this process in plants is scarce. Acylamino acid-releasing (AARE) enzymes are ATP-independent serine proteases, presumably acting on oxidized proteins and operating in a dual exo-/endopeptidase mode. They are found in all domains of life. Here, we investigated AARE enzymes in the moss Physcomitrella and the angiosperm Arabidopsis and identified three homologous nuclear genes in Physcomitrella (PpAARE1-3) and a single nuclear gene in Arabidopsis (AtAARE). Surprisingly, we observed triple localization of the proteins AtAARE and PpAARE1 to plastids, mitochondria and the cytosol in vivo, likely conserved across the plant lineage. This represents an ATP-independent possibility for degradation of oxidized proteins in the major source organelles of ROS in plants, which is distinct to mammals. Combinatorial knockout plants and protein interaction analysis revealed specific interactions of the moss AARE isoforms and functions in progressive aging. Analysis of an AtAARE T-DNA mutant further suggests the evolutionary conservation of AARE function in age-related development.
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and support a unified concept of ageing.
RNA modification is a dynamic and complex process that involves the addition of various chemical groups to RNA molecules, contributing to their diversity and functional complexity. Among all the RNA modifications, N6-methyladenosine (m6A) is the most common post-transcriptional modification found in mRNA molecules, particularly in eukaryotic mRNA. It involves methylation of the adenosine base at the nitrogen-6 position. This modification plays a crucial role in many aspects of RNA metabolism, including splicing, stability, translation, and the cellular response to stress. With the development of m6A sequencing technologies, our knowledge of m6A has evolved rapidly over the past two decades. However, one of the most widely used m6A profiling techniques termed “m6A individual-nucleotide resolution UV cross-linking and immunoprecipitation (miCLIP)” suffers from a high unspecific background signal due to the limited antibody binding specificity.
To accurately discriminate m6A sites from the background signal in miCLIP data, in Chapter 4, I first developed different strategies to identify the true miCLIP2 signal changes that are corrected for the underlying transcript abundance changes. I performed this analysis on data that generated with an improved experiment protocol, named miCLIP2. With the best performing strategy, the Bin-based method, I detected more than 10,000 genuine m6A sites. I then used the information embedded in the genuine m6A sites to train a machine learning model - named "m6Aboost" - to enable accurate m6A site detection from the miCLIP2 data without a control dataset from an m6A depletion cell line. To allow an easy access for future users, I packaged the m6Aboost model into an R package that is available on Bioconductor.
Although previous studies have reported that m6A is involved in three different RNA decay pathways, it remains unclear how a pathway is selected for a specific transcript or m6A site. In Chapter 5, I reveal that m6A sites in the coding sequence (CDS) induce a stronger and faster RNA decay than the m6A sites in the 3’ untranslated region (3’UTR). Through an in-depth investigation, I found that m6A sites in CDS trigger a novel mRNA decay pathway, which I termed CDS-m6A decay (CMD). Importantly, CMD is distinct from the three previously reported m6A-mediated decay pathways. In terms of its mechanism, CMD relies on translation, where m6A sites in the CDS lead to ribosome pausing and subsequent destabilization of the transcript. The transcripts targeted by CMD are identified by the m6A reader protein YTHDF2, preferentially localized to processing bodies (P-bodies), and undergo degradation facilitated by the decapping factor DCP2. CMD provides a flexible way to control the expression of CDS m6A-containing transcripts which include many developmental regulators and retrogenes.
In summary, this PhD thesis introduces a novel workflow for identifying m6A sites in miCLIP data through the implementation of the m6Aboost machine learning model. Using the m6A sites identified by m6Aboost and additional data, a newly uncovered m6A-mediated mRNA decay pathway, CMD, is elucidated, providing valuable insights into m6A-mediated decay processes.
Schülerlabor Künstliche Intelligenz – Verhaltensforschung im Biologieunterricht mit neuen Methoden
(2023)
Die Verhaltensbiologie ist ein wichtiger Inhalt im Biologieunterricht. Das zielgerichtete, forschende Beobachten bereitet den Schüler/-innen jedoch häufg Schwierigkeiten und sollte vor allem praktisch eingeübt werden. Das Schülerlabor KILab bietet dafür eine innovative Möglichkeit.
Manipulation of neuronal or muscular activity by optogenetics or other stimuli can be directly linked to the analysis of Caenorhabditis elegans (C. elegans) body length. Thus, WormRuler was developed as an open-source video analysis toolbox that offers video processing and data analysis in one application. Utilizing this novel tool, the super red-shifted channelrhodopsin variant, ChrimsonSA, was characterized in C. elegans. Expression and activation of ChrimsonSA in GABAergic motor neurons results in their depolarization and therefore elongation of body length, the extent of which providing information about the strength of neuronal transmission.