NMR-spektroskopische Untersuchungen an Fettsäurebindungsproteinen
- Ziel dieser Arbeit war es, mit der Methode der NMR-Spektroskopie strukturelle und funktionelle Eigenschaften von Fettsäurebindungsproteinen zu untersuchen. NMR-Spektren von Proteinen mit hohem -Faltblattanteil, wie H-FABP, zeigen häufig eine große Dispersion mit einer typischen Verteilung tief- und hochfeldverschobener Signale. Es wurden 1D/2D 1H-NMR Spektren für den Wildtyp und mehrere Mutanten (F4E, F4S, F4S/W8E, W8E, F16E, F16S, K21I, F64S, L66G und E72S) des humanen H-FABP aufgenommen und so weit wie möglich zugeordnet. Auf diese Weise ließ sich bestimmen, ob die typische -Faßstruktur des Wildtyp bei den Mutanten noch intakt ist. Fast alle Mutanten wiesen eine Signalaufspaltung von 10,2 bis 0,4 ppm wie der Wildtyp auf, nur die W8- Mutanten W8E und F4S/W8E zeigen keine Struktur mehr. H-FABP zeigt in NMR-Spektren sogenannte Spinsystem-Heterogenitäten, die auf mehrere parallel existierende konformationelle Zustände zurückzuführen sind und im NMR- Zeitfenster ( < 200 ms) nicht untereinander austauschen. Diese Spinsystem-Heterogenitäten werden nicht direkt durch Liganden verursacht, da sie auch in delipidierten H-FABP-Spektren vorhanden sind. Noch sind sie abhängig von der Position der in räumlicher Nachbarschaft befindlichen Seitenkette des F57, da sie auch in den Spektren einer F57S-Mutante anwesend sind. Eine Relipidierung der H-FABP Proben mit unterschiedlichen Fettsäuren führte zu einer selektiven Bevorzugung einzelner Spinsysteme. So konnte gezeigt werden, daß die Ligandenbindung beim H-FABP nach einem ,,selected-fit" Mechanismus abläuft, bei dem je nach gebundenem Liganden (Palmitin-, Palmitolein-, Stearin- oder Ölsäure) unterschiedliche, schon vorher vorliegende Konformationen des Proteinrückgrates bevorzugt werden. Ein weiterer Teil der hier vorliegenden Arbeit war die Bestimmung der Lösungsstruktur des humanen B-FABP. Es wurde zur Strukturaufklärung die holo-Form des Proteins verwendetet, die ein Fettsäuregemisch endogener Fettsäuren enthielt. Durch den Einsatz mehrdimensionaler homonuklearer und 15N-editierter NMR-Experimente gelang es, nahezu alle 1H und 15N Resonanzen der Aminosäuren zuzuordnen. Lediglich für K37 konnten in den Spektren keine Signale gefunden werden. Nach einer automatisierten Zuordnung der aus den NOESY-Spektren gewonnenen Abstandsbeschränkungen wurde zur Verfeinerung der Lösungsstruktur des humanen B-FABP ein strukturgefilterter Iterationsprozeß durchlaufen. Mit 2490 Abstandsrandbedingungen zwischen Protonenpaaren sowie 106 stereospezifischen Zuordnungen wurden Torsionswinkeldynamikrechnungen mit abschließender Energieminimierung durchgeführt. Ein mittlerer globaler RMSD-Wert der Proteinrückgratatome von 0,85 ± 0,12 Å erfüllt die Ansprüche einer hochaufgelösten Struktur. Die Tertiärstruktur entspricht einem -Faß bzw. einer -Muschel. Sie besteht aus zehn antiparallelen -Faltblattsträngen und einer kurzen Helix-Turn-Helix Domäne. Die - Faltblattstränge bilden zwei nahezu orthogonale -Faltblätter von jeweils fünf Strängen. Die Lösungsstruktur ähnelt trotz teilweise niedriger Sequenzhomologie den bereits bekannten Strukturen der FABPs aus unterschiedlichsten Organismen. Eine sehr gute Übereinstimmung wurde im Vergleich mit der Lösungsstruktur des H-FABP beobachtet. Die enge Verwandtschaft beider zur Unterfamilie IV gehörenden Proteine äußert sich durch die hohe Sequenzhomologie (67%), die Ähnlichkeit der Konformation und Bindungsaffinität der Liganden, die helikale Konformation am N-Terminus (V1-F4) und ein vergleichbares Wasserstoffbrückennetzwerk innerhalb der Bindungstasche.