Fast LLL-type lattice reduction

  • We modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovasz [LLL82] towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis. Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length 2exp(O(n)), SLLL-reduction runs in O(n.exp(5+epsilon)) bit operations for every epsilon > 0, compared to O(exp(n7+epsilon)) for the original LLL and to O(exp(n6+epsilon)) for the LLL-algorithms of Schnorr (1988) and Storjohann (1996). We present an even faster algorithm for SLLL-reduction via iterated subsegments running in O(n*exp(3)*log n) arithmetic steps.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claus Peter SchnorrGND
URN:urn:nbn:de:hebis:30-12071
URL:http://www.mi.informatik.uni-frankfurt.de/research/papers.html
Document Type:Report
Language:English
Year of Completion:2004
Year of first Publication:2004
Publishing Institution:Universit├Ątsbibliothek Johann Christian Senckenberg
Release Date:2005/07/04
Tag:Householder reflection; LLL-reduction; SLLL-reduction; error bounds; floating point errors; length defect; local LLLreduction; segments
HeBIS-PPN:191533750
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht