510 Mathematik
Refine
Year of publication
Document Type
- Article (159)
- Doctoral Thesis (123)
- diplomthesis (47)
- Preprint (26)
- Report (21)
- Book (17)
- Conference Proceeding (11)
- Master's Thesis (11)
- Contribution to a Periodical (10)
- Bachelor Thesis (8)
Has Fulltext
- yes (442)
Is part of the Bibliography
- no (442)
Keywords
- Kongress (6)
- Kryptologie (5)
- Stochastik (5)
- Mathematik (4)
- Online-Publikation (4)
- Statistik (4)
- point process (4)
- Brownian motion (3)
- Finanzmathematik (3)
- LLL-reduction (3)
Institute
- Mathematik (292)
- Informatik und Mathematik (76)
- Informatik (54)
- Präsidium (11)
- Physik (4)
- Goethe-Zentrum für Wissenschaftliches Rechnen (G-CSC) (3)
- Medizin (3)
- Biochemie und Chemie (2)
- Erziehungswissenschaften (2)
- Extern (2)
The 𝒮-cone provides a common framework for cones of polynomials or exponen- tial sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic- geometric exponentials (SAGE). In this paper, we study the S-cone and its dual from the viewpoint of second-order representability. Extending results of Averkov and of Wang and Magron on the primal SONC cone, we provide explicit generalized second- order descriptions for rational S-cones and their duals.
In this thesis, we cover two intimately related objects in combinatorics, namely random constraint satisfaction problems and random matrices. First we solve a classic constraint satisfaction problem, 2-SAT using the graph structure and a message passing algorithm called Belief Propagation. We also explore another message passing algorithm called Warning Propagation and prove a useful result that can be employed to analyze various type of random graphs. In particular, we use this Warning Propagation to study a Bernoulli sparse parity matrix and reveal a unique phase transition regarding replica symmetry. Lastly, we use variational methods and a version of local limit theorem to prove a sufficient condition for a general random matrix to be of full rank.
La creación de audio-podcasts ofrece una excelente oportunidad para representar de forma oral los contenidos de matemáticas usando medios digitales tanto en la formación docente, como en la educación primaria. Sin embargo, en el proceso de creación de los audio- -podcasts hay fases gráficas-escritas y otras orales que están estrechamente vinculadas entre sí. Este artículo trata sobre la creación y utilización de podcast en la educación primaria (PriMaPodcast) y en la formación docente (MathePodcast) tanto para la enseñanza como para la investigación.Mathematics audio-podcasts: communication and representation with ICTLa creación de audio-podcasts ofrece una excelente oportunidad para representar de forma oral los contenidos de matemáticas usando medios digitales tanto en la formación docente, como en la educación primaria. Sin embargo, en el proceso de creación de los audio- -podcasts hay fases gráficas-escritas y otras orales que están estrechamente vinculadas entre sí. Este artículo trata sobre la creación y utilización de podcast en la educación primaria (PriMaPodcast) y en la formación docente (MathePodcast) tanto para la enseñanza como para la investigación.
Ausgangspunkt der Forschungsarbeit ist der Gebrauch von Gesten in mathematischen Interaktionen von Lernenden. Es wird untersucht, inwiefern Gesten Teil des mathematischen Aushandlungsprozesses sind. Damit ist die Rekonstruktion einer potentiell fachlichen Bedeutung des Gestengebrauchs beim Mathematiklernen das zentrale Forschungsanliegen.
Theoretisch gerahmt wird die Arbeit von Erkenntnissen aus der psychologisch-linguistischen Gestenforschung zur systematischen Beschreibung von Gestik im Zusammenspiel mit der gleichzeitig geäußerten Lautsprache (McNeill, 1992; Kendon, 2004). Es werden ebenso ausgewählte Forschungen zur Gestik beim Mathematiklernen beleuchtet (Arzarello, 2006; Wille, 2020; Kiesow, 2016). Die mathematikdidaktische Interaktionstheorie begründet den sozial-konstruktivistischen Lernbegriff (Krummheuer, 1992). Ausgewählte Aspekte der Semiotik nach C. S. Peirce bieten eine theoretische Fundierung des Zeichenbegriffs und des Kerns mathematischen Agierens, verstanden als diagrammatisches Arbeiten (Peirce, 1931, CP 1.54 u. 1932, CP 2.228).
Von besonderer Bedeutung für die vorliegende Forschungsarbeit ist der linguistische Ansatz der Code-Integration und -Manifestation von redebegleitenden Gesten im Sprachsystem nach Fricke (2007, 2012) in Verbindung mit dem Peirce’schen Diagrammbegriff. Diese Perspektive ermöglicht eine theoretische Fundierung der zunächst empirisch beobachtbaren Multimodalität der Ausdrucksweisen von Lernenden beim gemeinsamen Mathematiktreiben. Der Peirce’sche Diagrammbegriff dient hierbei zur Rekonstruktion einer systemischen Relevanz von Gesten für das Betreiben von Mathematik: Bestimmte Gesten sind semiotisch als mathematische Zeichen beschreibbar und haben potentiell konstituierende Funktion für das diagrammatische Arbeiten der Lernenden. Der übergeordnete Forschungsfokus lautet: Wie nutzen Grundschüler*innen Gestik und Lautsprache, insbesondere in deren Zusammenspiel, um ihre mathematischen Ideen in den interaktiven Aushandlungsprozess einzubringen und über den Verlauf der Interaktion aufzugreifen, möglicherweise weiterzuentwickeln oder auch zu verwerfen? In der Ausdifferenzierung wird die Funktion der verwendeten Gesten und die Rekonstruktion von potentiell gemeinsam gebrauchten Gesten der Interagierenden in den Blick genommen.
Methodisch lässt sich die Forschungsarbeit der qualitativen Sozialforschung (Bohnsack, 2008) bzw. der interpretativen mathematikdidaktischen Unterrichtsforschung zuordnen (Krummheuer & Naujok, 1999). Es werden Beispiele aus mathematischen Interaktionssituationen ausgewertet, in denen sich Paare von Zweitklässler*innen mit einem mathematischen Problem aus der Kombinatorik und der Geometrie beschäftigen. Eine eigens theoriekonform entwickelte Transkriptpartitur dient zur Aufarbeitung der Videodaten. Mit der textbasierten Interaktionsanalyse (Krummheuer, 1992) und der grafisch angelegten Semiotischen Analyse (Schreiber, 2010) in einer Weiterentwicklung der Semiotischen Prozess-Karten (Huth, 2014) werden zwei hierarchisch aufeinander aufbauende Analyseverfahren verwendet.
Zentrale Forschungsergebnisse sind 1) die funktionale und gestalterische Flexibilität des Gestengebrauchs beim diagrammatischen Arbeiten der Lernenden, 2) die Rekonstruktion von Modusschnittstellen der Gesten mit anderen Ausdrucksmodi in Funktion, interaktionaler Bedeutungszuschreibung und Chronologie, und 3) die häufige Verwendung der Gesten als Modus der Wahl der Lernenden in mathematischen Interaktionen. Gesten weisen eine unmittelbare und voraussetzungslose Verfügbarkeit auf, eine funktionale und gestalterische Flexibilität in der mathematischen Auseinandersetzung und die Möglichkeit, Funktionen anderer Modi (vorübergehen) zu übernehmen. Es zeigt sich eine konstitutive und fachliche Bedeutung der Gestik für das mathematisch-diagrammatische Agieren der Lernenden. In der Arbeit wird daraus schließlich das doppelte Kontinuum der Gesten für das Mathematiklernen entwickelt. Es zeigt in der Dimension der Funktion des Gestengebrauchs und der Dimension des Objektbezugs der Gestengestalt die Vielfältigkeit der Gestenfunktionen im gemeinsamen diagrammatischen Arbeiten der Lernenden und gibt Einblick in die verwendeten Gestengestalten.
Die Forschungsarbeit offenbart den Bedarf einer Beachtung von Gesten in der fachdidaktischen Planung und Gestaltung von Mathematikunterricht und in der Erforschung und Diagnostik der mathematischen Entwicklung von Lernenden. Es handelt sich bei Gesten in mathematischen Interaktionen nicht um ein reines Beiwerk der Äußerung, sondern um einen fachlich bedeutsamen Modus in Bezug auf das Mathematiklernen. Der Gebrauch von Gestik ermöglicht die Erzeugung von Diagrammen im Handumdrehen und eröffnet perspektivisch eine Erforschung ihrer Bedeutung für mathematische Lehr-Lern-Prozesse.
Die in dieser Zusammenfassung angegebene Literatur findet sich im Literaturverzeichnis der vorgelegten Forschungsarbeit.
Die Arbeit befasst sich mit einer Vereinfachung des von Devroye (1999) geprägten Begriffs der random split trees und verallgemeinert diesen im Sinne von Janson (2019) auf unbeschränkten Verzweigungsgrad. Diese Verallgemeinerung deckt auch preferential attachment trees mit linearen Gewichten ab, wofür ein Beweis von Janson (2019) aufbereitet wird. Zusätzlich bleiben die von Devroye (1999) nachgewiesenen Eigenschaften über die Tiefe der hinzugefügten Knoten erhalten.
Aus Sicht der Pädagogischen Psychologie ist Lernen ein Prozess, bei dem es zu überdauernden Änderungen im Verhaltenspotenzial als Folge von Erfahrungen kommt. Aus konstruktivistischer Perspektive lässt sich Lernen am besten als eine individuelle Konstruktion von Wissen infolge des Entdeckens, Transformierens und Interpretierens komplexer Informationen durch den Lernenden selbst beschreiben. Erkennt der Lernende den Sinn und übernimmt, erweitert oder verändert ihn für sich selbst, so ist der Grundstein für nachhaltiges Lernen gelegt.
Lernen ist ein sehr individueller Prozess. Schule muss also individuelles Lernen auch im Klassenverband ermöglichen und der Lehrende muss zum Lerncoach werden, da sonst kein individuelles und eigenaktives Lernen möglich ist. Das Unterrichtskonzept des forschend-entdeckenden Lernens bietet genau diese Möglichkeit. Es erlaubt die Erfüllung der drei Grundbedürfnisse eines Menschen nach Kompetenz, Autonomie und sozialer Eingebundenheit und ermöglicht damit Motivation, Leistung und Wohlbefinden (Ryan & Deci, 2004).
Forschend-entdeckendes Lernen im Mathematikunterricht ist schrittweise geprägt von folgenden Merkmalen:
- eine problemorientierte Organisation
- selbstständiges, eigenaktives und eigenverantwortliches Lernen der Schülerinnen und Schüler
- individuelle Lernwege und Lernprozesse
- Entwicklung eigener Fragestellungen und Vorgehensweisen der Lernenden
- eigenes Aufstellen von Hypothesen und Vermutungen; Überprüfung der Vermutungen; Dokumentation, Interpretation und Präsentation der Ergebnisse
- eine fördernde Atmosphäre, in der die Lernenden nach und nach forschende Arbeitstechniken vermitteln bekommen
- kooperative Lernformen und damit Förderung von Team- und Kommunikationsfähigkeit
- Unterrichtsinhalte mit hohem Realitäts- und Sinnbezug, gesellschaftlicher Relevanz, Möglichkeiten der Interdisziplinarität
- Stetige Angebote der Unterstützung
Das entdeckende Lernen kann als Vorstufe des forschenden Lernens gesehen werden, da hier der wissenschaftliche Fokus noch nicht so stark ausgeprägt ist. Um alle Phasen auf dem Weg zu annähernd wissenschaftlichen forschenden Lernens anzusprechen, verwenden wir den Begriff des forschend-entdeckenden Lernens.
Voraussetzung ist, dass die Lehrkräfte das forschende Lernen als aktiven, produktiven und selbstbestimmten Lernprozess selbst zuvor erlebt haben müssen. Unter anderem können die Lehrkräfte Unterrichtsprozesse danach besser planen und währenddessen unterstützen, da sie selbst forschend-entdeckendem Lernen „ausgesetzt“ waren und vergleichbare Prozesse durchlebt haben.
Hiermit wird deutlich, dass forschendes Lernen nicht bedeuten kann, dass die Schülerinnen und Schüler auf sich gestellt sind. Die gezielte Unterstützung der Lernenden beim Entdecken und Forschen durch die Lehrkraft ist für einen ertragreichen Lernerfolg unverzichtbar und muss Teil der Vorbereitung und des Prozesses sein.
Internationale Studien zeigen, dass forschend-entdeckende Unterrichtsansätze (inquiry-based learning IBL) im Mathematikunterricht bei geeigneter Umsetzung Lernen verbessern, Lernerfolg und Lernleistung steigern und Freude gegenüber Mathematikunterricht erhöhen können. Die Implementierung dieses Unterrichtsansatzes ist trotz der positiven Ergebnisse nicht alltäglich.
Um neue Unterrichtskonzepte in den Schulalltag zu bringen beziehungsweise um bestehende Unterrichtskonzepte neu in den Schulalltag zu bringen bedarf es Fortbildungen zur Professionalisierung von Lehrerinnen und Lehrern.
Tasks are a key resource in the process of teaching and learning mathematics, which is why task design continues to be one of the main research issues in mathematics education. Different settings can influence the principles underlying the formulation of tasks, and so does the outdoor context. Specifically, a math trail can be a privileged context, known to promote positive attitudes and additional engagement for the learning of mathematics, confronting students with a sequence of real-life tasks, related to a particular mathematical theme. Recently, mobile devices and apps, i.e., MathCityMap, have been recognized as an important resource to facilitate the extension of the classroom to the outdoors. The study reported in this paper intends to identify the principles of design for mobile theme-based math trails (TBT) that result in rich learning experiences in early algebraic thinking. A designed-based research is used, through a qualitative approach, to develop and refine design principles for TBT about Sequences and Patterns. The iterative approach is described by cycles with the intervention of the researchers, pre-service and in-service teachers and students of the targeted school levels. The results are discussed taking into account previous research and data collected along the cycles, conducing to the development of general design principles for TBT tasks.
We deal with the shape reconstruction of inclusions in elastic bodies. For solving this inverse problem in practice, data fitting functionals are used. Those work better than the rigorous monotonicity methods from Eberle and Harrach (Inverse Probl 37(4):045006, 2021), but have no rigorously proven convergence theory. Therefore we show how the monotonicity methods can be converted into a regularization method for a data-fitting functional without losing the convergence properties of the monotonicity methods. This is a great advantage and a significant improvement over standard regularization techniques. In more detail, we introduce constraints on the minimization problem of the residual based on the monotonicity methods and prove the existence and uniqueness of a minimizer as well as the convergence of the method for noisy data. In addition, we compare numerical reconstructions of inclusions based on the monotonicity-based regularization with a standard approach (one-step linearization with Tikhonov-like regularization), which also shows the robustness of our method regarding noise in practice.
We deal with the reconstruction of inclusions in elastic bodies based on monotonicity methods and construct conditions under which a resolution for a given partition can be achieved. These conditions take into account the background error as well as the measurement noise. As a main result, this shows us that the resolution guarantees depend heavily on the Lamé parameter μ and only marginally on λ.
The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization
(2023)
We consider the inverse boundary value problem of determining a coefficient function in an elliptic partial differential equation from knowledge of the associated Neumann-Dirichlet-operator. The unknown coefficient function is assumed to be piecewise constant with respect to a given pixel partition, and upper and lower bounds are assumed to be known a-priori.
We will show that this Calderón problem with finitely many unknowns can be equivalently formulated as a minimization problem for a linear cost functional with a convex non-linear semidefinite constraint. We also prove error estimates for noisy data, and extend the result to the practically relevant case of finitely many measurements, where the coefficient is to be reconstructed from a finite-dimensional Galerkin projection of the Neumann-Dirichlet-operator.
Our result is based on previous works on Loewner monotonicity and convexity of the Neumann-Dirichlet-operator, and the technique of localized potentials. It connects the emerging fields of inverse coefficient problems and semidefinite optimization.