510 Mathematik
Refine
Year of publication
Document Type
- Article (212)
- Doctoral Thesis (138)
- Preprint (57)
- diplomthesis (34)
- Report (21)
- Book (17)
- Diploma Thesis (14)
- Contribution to a Periodical (13)
- Conference Proceeding (12)
- Master's Thesis (12)
Has Fulltext
- yes (547)
Is part of the Bibliography
- no (547)
Keywords
- Kongress (6)
- Kryptologie (5)
- Mathematik (5)
- Stochastik (5)
- Online-Publikation (4)
- Statistik (4)
- point process (4)
- Brownian motion (3)
- Finanzmathematik (3)
- LLL-reduction (3)
Institute
Correction to: Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials
(2021)
Die Bedeutung und der Einfluss des Darmmikrobiomes für den menschlichen Körper rückt in den letzten Jahren immer mehr in den Fokus der Forschung. Studien zeigen Zusammenhänge zwischen Veränderungen im Mikrobiom und dem Lebensstil oder dem Vorhandensein von Krankheiten auf. Mikrobiomanalysen ermöglichen das Identifizieren von charakteristischen Profilen oder Markern. Diese können die Früherkennung unterstützen oder Ansätze für Therapien liefern. Diabetes mellitus Typ 2 ist eine der weltweit häufigsten Erkrankungen. Diese führt zu einer Vielzahl von Folgeerkrankungen, wie Schlaganfälle oder Nierenversagen. Die Volkskrankheit stellt somit eine große Herausforderung für das Gesundheitssystem dar. Zusätzlich wird Diabetes mellitus Typ 2 meist sehr spät diagnostiziert. Die Untersuchung der Zusammenhänge zwischen dem Darmmikrobiom und Diabetes mellitus Typ 2 führen zu einem besseren Verständnis der molekularen Wechselwirkungen und Mechanismen. Dies unterstützt eine erfolgreiche Behandlung und Entwicklung von Medikamenten, auch über Diabetes mellitus Typ 2 hinaus. Neben der Betrachtung von einzelnen Bakterien oder ganzen taxonomischen Ebenen ist die Einbeziehung der bakteriellen Pathways wichtig. Diese verknüpfen anhand ihrer biologischen Funktion einzelne Bakterien miteinander.
Ziel der vorliegenden Arbeit war statistisch signifikante Korrelationen zwischen der Zusammensetzung des Darmmikrobioms im Menschen und der Ausbildung von Diabetes mellitus Typ 2 mittels statistischer Methoden und Methoden des maschinellen Lernens zu finden und zu charakterisieren. Der erste Schritt bestand in der Detektion der vorhandenen Bakterien und der dazugehörige Pathways aus Stuhlproben durch Next Generation Sequencing von 16S rDNA. Diese wurden anschließend durch eine Analyse-Pipeline zu einem Mikrobiomprofil zusammengefasst. Die Zuordnung der beteiligten Pathways erfolgte anhand der identifizierten Genfamilien. Statistische Methoden, wie der Student t-Test oder Clusteranalysen, dienten der Ermittlung von signifikanten Unterschieden. Berücksichtigt wurden dabei nicht nur einzelne Bakterien, sondern auch das funktionelle Mikrobiom. Somit konnte ein umfassendes Profil erstellt werden.
Die Hauptkomponentenanalyse wurde verwendet, um die Variabilität in den mikrobiellen Daten zu reduzieren und wichtige Muster oder Gruppierungen zu identifizieren. Das k-means-Clustering ermöglichte die Identifikation von Clusterstrukturen innerhalb der Mikrobiomdaten, während t-distributed Stochastic Neighbor Embedding und Uniform Manifold Approximation and Projection die Visualisierung der multidimensionalen Daten in einem zweidimensionalen Raum ermöglichten. Zur Bestimmung der Diversität im Darmmikrobiom wurden verschiedene Metriken, wie der Shannon-Entropy und die inverse Simpson-Korrelation, verwendet. Diese erlaubten es, die Artenvielfalt und die gleichmäßige Verteilung der Mikroorganismen zu bewerten. Darüber hinaus wurden auch fortgeschrittene Methoden des maschinellen Lernens eingesetzt. Diese Methoden ermöglichten eine prädiktive Modellierung sowie die Identifikation von wichtigen Merkmalen im Zusammenhang mit dem Darmmikrobiom bei Diabetes mellitus Typ 2, aus komplexen, heterogenen Daten. Ein entwickeltes künstliches neuronales Netz bildete die Grundlage für weitergehende Untersuchungen. Die Identifikation von relevanten bakteriellen Pathways für die Klassifikation ermöglichte die Ermittlung von biologisch funktionalen Zusammenhängen. Dazu wurde eine Analyse zur Merkmalsbedeutung über einen spieltheoretischen Ansatz (SHapley Additive exPlanations) angewendet. Die zusätzliche Analyse von assoziierten Gesundheitsdaten unterstützten die Erkennung von Wechselwirkungen und Einflüssen. Dazu fanden ebenfalls sowohl klassische statistische Methoden als auch maschinelles Lernen Anwendung. Mittels des Chi-Square-Tests und kategorischer Boostingverfahren konnten wichtige Merkmale detektiert werden. Die Methoden wurden wegen ihrer Eignung, Zusammenhänge in kategorischen Merkmalen zu detektieren, ausgewählt.
Die Wahl der Methoden erfolgte aufgrund ihrer Eignung zur Analyse von komplexen mikrobiellen Datensätzen und ihrer Fähigkeit, Muster und Zusammenhänge in den Daten zu identifizieren. Die Kombination aus klassischen statistischen Methoden und Methoden des maschinellen Lernens ermöglichte eine umfassende Untersuchung des Darmmikrobioms im Zusammenhang mit Diabetes mellitus Typ 2.
Highlights
• We define a stochastic agent-based model for cancer cell dormancy and chemotherapy.
• The main subject of our simulation study is the ODE system arising from this model.
• Even a small fraction of dormant cancer cells can prevent treatment success.
• We analyse several multidrug regimes, targeting also dormant cells in different ways.
• Depending on the parameters, we provide basic rules for treatment protocol design.
Abstract
Therapy evasion – and subsequent disease progression – is a major challenge in current oncology. An important role in this context seems to be played by various forms of cancer cell dormancy. For example, therapy-induced dormancy, over short timescales, can create serious obstacles to aggressive treatment approaches such as chemotherapy, and long-term dormancy may lead to relapses and metastases even many years after an initially successful treatment.
In this paper, we focus on individual cancer cells switching into and out of a dormant state both spontaneously as well as in response to treatment. We introduce an idealized mathematical model, based on stochastic agent-based interactions, for the dynamics of cancer cell populations involving individual short-term dormancy, and allow for a range of (multi-drug) therapy protocols. Our analysis – based on simulations of the many-particle limit – shows that in our model, depending on the specific underlying dormancy mechanism, even a small initial population (of explicitly quantifiable size) of dormant cells can lead to therapy failure under classical single-drug treatments that would successfully eradicate the tumour in the absence of dormancy. We further investigate and quantify the effectiveness of several multi-drug regimes (manipulating dormant cancer cells in specific ways, including increasing or decreasing resuscitation rates or targeting dormant cells directly). Relying on quantitative results for concrete simulation parameters, we provide some general basic rules for the design of (multi-)drug treatment protocols depending on the types and processes of dormancy mechanisms present in the population.
Biological movement patterns can sometimes be quasi linear with abrupt changes in direction and speed, as in plastids in root cells investigated here. For the analysis of such changes we propose a new stochastic model for movement along linear structures. Maximum likelihood estimators are provided, and due to serial dependencies of increments, the classical MOSUM statistic is replaced by a moving kernel estimator. Convergence of the resulting difference process and strong consistency of the variance estimator are shown. We estimate the change points and propose a graphical technique to distinguish between change points in movement direction and speed.
Biological movement patterns can sometimes be quasi linear with abrupt changes in direction and speed, as in plastids in root cells investigated here. For the analysis of such changes we propose a new stochastic model for movement along linear structures. Maximum likelihood estimators are provided, and due to serial dependencies of increments, the classical MOSUM statistic is replaced by a moving kernel estimator. Convergence of the resulting difference process and strong consistency of the variance estimator are shown. We estimate the change points and propose a graphical technique to distinguish between change points in movement direction and speed.
In this dissertation a new model for the description of cell organelle movement is defined and a test and change point detection algorithm for changes in the model parameters is proposed.
The description of movement patterns can be important for the understanding of various biological processes on multiple scales. One of the primary goals is to understand the causes of change between movement patterns. On the micro scale, movement patterns of cell organelles and swimming micro-organisms such as cells are investigated. To learn more about the different movement types of cell organelles, as well as the changes between these types, we analyse the movement of two specific types of cell organelles in the root of the plant Arabidopsis thaliana, Plastids and Peroxisomes. Interestingly, while all tracks were recorded in three dimensions, over 90% of the tracks show more than 95% of their movement variability in only two dimensions. We therefore focus on the two-dimensional projection of the movements, allowing comparability to approaches for animal movement pattern analysis. In this data set of organelle movement we observe visually prominent, linear movement structures with seemingly piecewise constant movement direction and speed. Since the different sections of the movement could be associated with different movement mechanisms such as movement through cytoplasmic streaming or transport along intracellular filaments, it is of interest to detect the change points (CPs) in the direction and speed of the movement.
The most widely used time discrete models are variants of the random walk. Most often used, particularly in animal studies, are so-called correlated random walks, which are parametrised by a random turning angle relative to the previous direction. Correlated random walks are useful to model movement where the difference between highly directed and undirected movement is of interest. By fitting HMM models to the observed organelle movement we show that a biased random walk (BRW), parametrised via absolute directions, may be more appropriate to model sections of different but constant movement direction. The BRW is therefore used as a reference model. However, our findings indicate that a BRW shows a higher variability in the movement direction and may thus move less strictly along a linear structure than can be observed in many organelle tracks.
Therefore, we define a new model termed linear walk (LW) with less variability around an expected position. Both models, the BRW and LW, have the same process of expected positions, which is parametrised by two parameters, the movement direction and the step length, where the direction is the angle relative to the x-axis. The models differ in regard to the variability around the expected position. In the BRW, independent random increments are summed up, while in the LW an independent, random error is added to each expected position. Due to this definition the changes in movement direction and step length can be described independently. The expectation of the increments in both models can be parameterised by the movement direction and step length or alternatively by a two dimensional expectation. The maximum likelihood estimators of the model parameters in both models and proof of their strong consistency is provided. Note that for the expectation of the increments in the BRW the estimator is the classical mean, while in the LW the estimator is a weighted average.
In the context of the BRW model a known MOSUM approach for the bivariate detection of change points is easily adapted to our setting. In this approach a double window is shifted over the movement track. The difference of the bivariate expectation of increments in the left and right window half is estimated, leading to a process of differences that fluctuates around the origin, but shows systematic deviation in the neighborhood around a CP. Therefore the maximum deviation of the process of differences from the origin is used as a test statistic. The rejection threshold is obtained via simulation of a limit process. CPs are estimated successively by identifying local deviations of the process of differences from the origin.
In the LW model the MOSUM has inconvenient properties due to the dependency structure of the increments. Therefore a moving kernel approach is proposed where the maximum likelihood estimators for the expectation in the LW model are used instead of the classical mean. For this approach the proof of the weak convergence of the process of differences assuming the true variance is provided. For both approaches simulation studies concerning the test power and precision are provided.
Since the CPs in both approaches are detected within the expectation, we propose a graphical technique to classify the detected change points into CPs in movement direction and step length and apply this technique to the observed organelle movement.
The FIND algorithm (also called Quickselect) is a fundamental algorithm to select ranks or quantiles within a set of data. It was shown by Grübel and Rösler that the number of key comparisons required by Find as a process of the quantiles α∈[0,1] in a natural probabilistic model converges after normalization in distribution within the càdlàg space D[0,1] endowed with the Skorokhod metric. We show that the process of the residuals in the latter convergence after normalization converges in distribution to a mixture of Gaussian processes in D[0,1] and identify the limit's conditional covariance functions. A similar result holds for the related algorithm QuickVal. Our method extends to other cost measures such as the number of swaps (key exchanges) required by Find or cost measures which are based on key comparisons but take into account that the cost of a comparison between two keys may depend on their values, an example being the number of bit comparisons needed to compare keys given by their bit expansions.
We show that the set of atoms of the limiting empirical marginal distribution in the random 2-SAT model is Q∩(0,1), for all clause-to-variable densities up to the satisfiability threshold. While for densities up to 1/2, the measure is purely discrete, we additionally establish the existence of a nontrivial continuous part for any density in (1/2,1). Our proof is based on the construction of a random variable with the correct distribution as the the root marginal of a multi-type Galton-Watson tree, along with a subsequent analysis of the resulting almost sure recursion.
We provide a simplified proof of the random k-XORSAT satisfiability threshold theorem. As an extension we also determine the full rank threshold for sparse random matrices over finite fields with precisely k non-zero entries per row. This complements a result from [Ayre, Coja-Oghlan, Gao, Müller: Combinatorica 2020]. The proof combines physics-inspired message passing arguments with a surgical moment computation.