Biochemische Charakterisierung einer cyanobakteriellen ß-Carotin-Monoketolase und ihre funktionelle Expression in höheren Pflanzen

  • In der vorliegenden Arbeit konnte die β-Carotin-Ketolase aus dem Cyanobakterium Synechocystis PCC 6803 nach heterologer Expression in E. coli gereinigt und enzymatisch charakterisiert werden. Die Funktion der β-Carotin-Ketolase wurde in vivo durch Komplementierung von β- Carotin-produzierenden E. coli-Transformanten überprüft. Die β-Carotin-Ketolase agierte hier auch als Diketolase und synthetisierte sowohl Echinenon als auch Canthaxanthin. Untersuchungen der Substratspezifität der β-Carotin-Ketolase in vivo und in vitro ergaben, daß nur Carotinoide erkannt werden, die einen β-Iononring ohne Hydroxygruppe in Position C3 aufwiesen. So wurden die Carotinoide β-Carotin, Echinenon, β-Cryptoxanthin und α-Carotin als Substrate erkannt und zu Echinenon, Canthaxanthin, 3’-Hydroxyechinenon und 4-Keto-α-Carotin umgesetzt. Zeaxanthin, 3’-Hydroxyechinenon, 4-Ketozeaxanthin sind keine Substrate der β-Carotin-Ketolase. Die β-Carotin-Ketolase kann einen ε-Iononring, wie in α-Carotin, nicht modifizieren. Die β-Carotin-Ketolase mit einer apparenten Molmasse von 61 kDa wurde durch pPQE30crtO und pPEU30crtO als rekombinantes Polypeptid mit sechs N-terminalen Histidinen in E. coli heterolog exprimiert. Die kinetischen Parameter der β-Carotin-Ketolase konnten in in vitro-Enzymaktivitätstests bestimmt werden. Der KM-Wert für das Substrat β-Carotin lag bei 41,6 μM und der dazugehörende Vmax-Wert bei 1,318 μmol mg-1 h-1. Für das Substrat Echinenon wurde ein KM-Wert von 35,3 μM und ein Vmax-Wert von 0,339 μmol mg-1 h-1 ermittelt. Die Spezifität der β-Carotin-Ketolase war für β-Carotin dreimal höher als für Echinenon. Es konnte keine Kofaktorabhängigkeit nachgewiesen werden, aber eine starke Abhängigkeit der β-Carotin-Ketolase von molekularem Sauerstoff. Die Zugabe des Detergenz Nonidet P-40 in in vitro-Enzymaktivitätstests erhöhte die enzymatische Aktivität der β-Carotin-Ketolase deutlich. Durch die Metallionen-Affinitätschromatographie konnte das Enzym annährend zur Homogenität (93%) unter Erhalt seiner enzymatischen Aktivität gereinigt werden. Dabei blieb die enzymatische Aktivität der β-Carotin-Ketolase nicht nur erhalten, sondern steigerte sich im Vergleich zur Aktivität in der cytosolischen Fraktion um den Faktor 4,5. Die funktionelle Expression der β-Carotin-Ketolase in höheren Pflanzen Nicotiana tabacum, N. tabacum CrtZ Linie U3, N. glauca und Solanum tuberosum Baltica 47-18 erfolgte unter der Kontrolle des konstitutiven CaMV 35S-Promotors. Außer in der Transformante N. glauca CrtO schien die Integration der Ketolase in das Genom der Pflanzen und die Expression von CrtO die Fitness der Transformanten, gemessen am Chlorophyllgehalt und der photosynthetischen Effizienz, nicht negativ beeinflußt zu haben. Der Gesamtcarotinoidgehalt in den Blättern von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO änderte sich trotz der Integration des crtO-Gens kaum im Vergleich zu den Wildtypen. In Blättern von S. tuberosum Baltica 47-18 CrtO konnte eine leichte Erhöhung des Gesamtcarotinoidgehaltes beobachtet werden. Dagegen kann es in Blättern von N. glauca CrtO zu einer Verdoppelung des Carotinoidgehaltes bei gleichzeitig halbiertem Chlorophyllgehalt. In den Blättern akkumulierten Ketocarotinoide mit Anteilen von 5% in N. tabacum CrtO, 12% in S. tuberosum Baltica 47-18 CrtO, 18% in N. tabacum CrtZ Linie U3 CrtO und 16-33% in N. glauca CrtO. Die Anteile der synthetisierten Ketocarotinoide setzten sich in den Blättern von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO aus Echinenon, 3’-Hydroxyechinenon und Ketolutein zusammen, während in Blättern von N. glauca CrtO und S. tuberosum Baltica 47-18 CrtO Echinenon, 3’-Hydroxyechinenon und 4-Ketozeaxanthin enthalten waren. In Nektarien von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO wurde der Gesamtcarotinoidgehalt verdoppelt bis verdreifacht im Vergleich zu den Nektarien des entsprechenden Wildtyps. Es akkumulierten Echinenon, 3’-Hydroxyechinenon, 4-Ketozeaxanthin und Ketolutein. Dabei enthielten die Nektarien von N. tabacum CrtZ Linie U3 CrtO die meisten Ketocarotinoide. Die Nektarien von N. glauca CrtO enthielten deutlich weniger Ketocarotinoidanteile, obwohl der Gesamtcarotinoidgehalt fast dreimal so hoch ist wie in N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO. Es akkumulierten nur Echinenon, 3’-Hydroxyechinenon und Ketolutein. Die anderen Blütenorgane von N. glauca CrtO wiesen deutlich höhere Anteile an Ketocarotinoiden auf, zeigten aber wie die Nektarien gegenüber dem Wildtyp keine deutlichen Unterschiede im Gesamtcarotinoidgehalt. Für die Synthese von Astaxanthin war eine Interaktion zwischen der β-Carotin-Hydroxylase und der β-Carotin-Ketolase von entscheidender Bedeutung. Die Akkumulation von „Intermediaten“ der Astaxanthin-Biosynthese in N. tabacum CrtO, N. tabacum CrtZ Linie U3 CrtO und N. glauca CrtO wies auf eine erfolgreiche Interaktion hin. Einzig in den Knollen der CrtO-Transformanten von S. tuberosum Baltica 47-18 konnte Astaxanthin mit einem Anteil von 2% am Gesamtcarotinoidgehalt nachgewiesen werden. Die Nektarien N. tabacum CrtZ Linie U3 CrtO erwiesen sich neben den Knollen als am besten für die Produktion von ketolierten und hydroxylierten Carotinoiden. Die Transformation von N. glauca mit einem Gen der Carotinoidbiosynthese wurde in der vorliegenden Arbeit erstmals durchgeführt, zeigte aber nicht die erwartete Produktion größerer Mengen an Ketocarotinoiden in Kronblättern. Außerdem ist es in der vorliegenden Arbeit erstmals gelungen, in der Kartoffelknolle durch die Einführung einer cyanobakteriellen β-Carotin-Ketolase die Biosynthese von Ketocarotinoiden zu etablieren, um das für die Ernährung wichtige Ketocarotinoid Astaxanthin zu akkumulieren.

Download full text files

  • Gerjets_Dissertation_2006.pdf
    deu

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tanja Gerjets
URN:urn:nbn:de:hebis:30-33589
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Rüdiger WittigORCiDGND, Claudia Büchel
Advisor:Gerhard Sandmann
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/21
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/06/13
Release Date:2006/11/21
Page Number:185
First Page:1
Last Page:174
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:348050704
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG