Verbesserte Gitterbasenreduktion; getestet am Chor-Rivest Kryptosystem und an allgemeinen Rucksack-Problemen
- Gitter sind diskrete additive Untergruppen des Rn. Praktische Bedeutung erlangte die Gittertheorie durch effziente Algorithmen zur Gitterbasenreduktion, mit deren Hilfe Optimierungsprobleme gelöst werden können. Der erste dieser Algorithmen wurde von Lenstra, Lenstra und Lovasz entwickelt. Schnorr und Euchner entwickelten effizientere Algorithmen. Sie untersuchten die Güte der Reduktion anhand von Rucksack-Problemen. Bei einem Rucksack-Problem der Dimension n müssen aus einer gegebenen Menge von n Gewichten diejenigen bestimmt werden, die zusammen einen gegeben Rucksack genau ausfüllen. Die Algorithmen von Schnorr und Euchner lösen fast alle Rucksack-Probleme der Dimensionen 42 bis 66. Meine neuen verbesserten Algorithmen lösen einen noch größeren Anteil der Rucksack-Probleme in kürzerer Rechenzeit. Gleichzeitig sind sie in Dimensionen 103 bis 151. Coster, Joux, LaMacchia. Odlyzko, Schnorr und Stern geben eine untere Schranke für die Größe der Gewichte von Rucksack-Problemen an, die fast immer gelöst werden können. Die Gewichte werden zufällig aus einem Intervall natüurlicher Zahlen gewählt. Dieses Ergebnis erweitere ich auf k-fache Rucksack-Probleme. Weiterhin kann für für die Wahl jedes Gewichtes eine beliebige Menge ganzer Zahlen festgelegt werden. Ebenso sind Mengen mit nur einem Element zulässig.