Kurzzeitspektroskopische Untersuchungen photoinduzierter Ladungstransferreaktionen

Ultrafast spectroscopy of photoinduced charge transfer reactions

  • Im Mittelpunkt dieser Arbeit steht die Charakterisierung zweier Systeme, bei denen schnelle photoinduzierte Ladungstransferreaktionen auftreten. Mittels Anregungs-Abtast-Spektroskopie im sichtbaren Spektralbereich wurde zum einen die bisher noch nicht charakterisierte Primärreaktion des erst vor wenigen Jahren entdeckten bakteriellen Retinalproteins Proteorhodopsin untersucht. Dieses Protein, das einen signifikanten Beitrag zur Energiebilanz der euphotischen Zone leisten kann, zeigt einen vektoriellen, pH-abhängigen und lichtgetriebenen Protonentransfer über die Zellmembran. Mittels zeitaufgelöster Femtosekundenspektroskopie wurde die Primärdynamik in saurer sowie in alkalischer Umgebung untersucht. Nach Photoanregung von Proteorhodopsin zeigt sich eine konzertierte Schwingung des all-trans-Retinals, die in einer biphasischen Reaktion zu einer Isomerisierung zum 13-cis-Zustand führt. Neben den genauen Zerfallszeiten wird auch das Besetzungsverhältnis des schnellen zum langsamen Zerfallskanal durch den Protonierungszustand des primären Protonenakzeptors gesteuert. In alkalischer Umgebung reagieren mehr Moleküle über den schnellen Reaktionskanal als in saurer Umgebung. Zusätzlich vergrößert sich die Quantenausbeute der Isomerisierungsreaktion vom all-trans- zum 13-cis-Retinal um den Faktor zwei beim Erhöhen des pH-Wertes von 6 auf 9. Durch die Reaktion des Chromophors auf die unterschiedlichen Ladungszustände des primären Protonenakzeptors zeigt sich, dass die Proteinumgebung elementar für die Funktion, speziell auch für die primäre Photodynamik, ist. Eine mögliche Erklärung berücksichtigt die räumliche Nähe der entsprechenden Aminosäure zur C13=C14 Bindung. Durch Deprotonierung an dieser Stelle kommt es zu einer Schwächung der genannten Bindung. Die energetische Barriere für die Isomerisierung wird herabgesetzt und diese Reaktion kann schneller und effizienter ablaufen als bei Gegenwart einer protonierten Aminosäure. Da die Ladung des Akzeptors die Reaktion „steuert“, kann von einer elektrostatischen Kontrolle der Reaktionsdynamik gesprochen werden. Im zweiten Teil dieser Arbeit wurde die photoinduzierte Dynamik von Merocyaninen sowohl frei in Lösung als auch an kolloidale Halbleiter gekoppelt untersucht. Für die freien Farbstoffe lassen sich zwei Deaktivierungskanäle unterscheiden. Nach der Photoanregung kann das Merocyanin an der zentralen konjugierten Polymethinkette isomerisieren. Die Entstehung des daraus resultierenden verdrehten Moleküls konnte innerhalb weniger zehn Pikosekunden beobachtet werden. Die andere Möglichkeit die aufgenommene Energie wieder abzugeben besteht in der Bildung eines angeregten Triplettzustandes. Die Besetzung dieses Zustandes lässt sich innerhalb weniger Pikosekunden beobachten und geht somit signifikant schneller vonstatten als die Isomerisierung. Durch Kopplung der Merocyanine an TiO2-Halbleiterkolloide werden andere Deaktivierungskanäle wichtig. Mit einer Zeitkonstante von wenigen zehn Femtosekunden kommt es zu einem schnellen Ladungstransfer aus dem Farbstoff in den Halbleiter. Parallel zu dieser ultraschnellen Elektroneninjektion bildet sich, wie für das ungekoppelte System auch, der verdrehte Zustand. Die Bindung an den Halbleiter führt jedoch zu einer Beschleunigung der Torsionsbewegung, sodass sich die Geometrieänderung innerhalb weniger Pikosekunden beobachten lässt. Auch aus diesem Zustand kommt es zur Elektroneninjektion aus dem Farbstoff in das Leitungsband des Halbleiters. Die Triplettbildung ist dagegen für das gekoppelte System nicht beobachtbar, was zu einer erhöhten Stabilität führt. Neben der Bildung der ladungsgetrennten Zustände konnte mittels der Femtosekundenspektroskopie auch die partielle Rückreaktion zu neutralen Systemen beobachtet werden. Die Reduktion des Merocyaninkations erfolgt innerhalb weniger 100 ps, ist aber nach einer Nanosekunde noch immer nicht vollständig abgeschlossen, sodass ein signifikanter Teil der Moleküle bzw. Kolloide geladen bleibt. Sämtliche Beobachtungen des Farbstoff-Halbleiter-Systems lassen sich in einem Reaktionsmodell zusammenfassen. Mit diesem lässt sich die Dynamik nach Photoanregung erklären, sowie die energetische Lage der beteiligten Zustände im Verhältnis zueinander betrachten. Ein bereits existierendes Reaktionsmodell des freien Farbstoffes konnte mittels der in dieser Arbeit gewonnenen Erkenntnisse auf den Bereich unterhalb von einer Nanosekunde erweitert werden. Zusammenfassend lässt sich sagen, dass die Ergebnisse dieser Arbeit zum einen dazu dienen, natürliche Ladungstransferreaktionen zu verstehen. Durch die Aufklärung der Primärdynamik von Proteorhodopsin konnte ein weiterer Baustein zum Verständnis dieses erst kürzlich entdeckten und für die Energiebilanz der Meere wichtigen Proteins hinzugefügt werden. Zum anderen tragen die Resultate dieser Arbeit auch zum Verständnis eines künstlichen Photosynthesesystems (Grätzelzelle) bei und können zur Effizienzsteigerung sowie zur Optimierung genutzt werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Oliver Lenz
URN:urn:nbn:de:hebis:30-25410
Referee:Josef WachtveitlORCiDGND, Bernd BrutschyGND
Advisor:Josef Wachtveitl
Document Type:Doctoral Thesis
Language:German
Year of Completion:2005
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/03/17
Release Date:2006/04/05
Tag:Graetzelzelle; Merocyanin; Proteorhodopsin; Titandioxid
graetzel cell; merocyanine; proteorhodopsin; titanium dioxide
GND Keyword:Ultrakurzzeitspektroskopie; Ladungstransfer; Retinalproteine; Kolloider Halbleiter; Farbstoffsolarzelle
Page Number:150
HeBIS-PPN:176927204
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht