540 Chemie und zugeordnete Wissenschaften
Refine
Year of publication
Document Type
- Doctoral Thesis (578)
- Article (516)
- Book (22)
- Contribution to a Periodical (16)
- Conference Proceeding (11)
- Report (9)
- Preprint (6)
- diplomthesis (5)
- Other (2)
- Review (2)
Has Fulltext
- yes (1169)
Is part of the Bibliography
- no (1169)
Keywords
- crystal structure (30)
- NMR spectroscopy (12)
- RNA (11)
- hydrogen bonding (10)
- NMR (9)
- Nanopartikel (8)
- Proteomics (8)
- Organische Synthese (7)
- photochemistry (7)
- Biochemie (6)
Institute
- Biochemie und Chemie (736)
- Biochemie, Chemie und Pharmazie (181)
- Pharmazie (151)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (33)
- Biowissenschaften (28)
- Präsidium (27)
- Exzellenzcluster Makromolekulare Komplexe (18)
- Physik (15)
- Sonderforschungsbereiche / Forschungskollegs (12)
- Medizin (8)
Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.
Modular polyketide synthases (PKSs) produce complex, bioactive secondary metabolites in assembly line-like multistep reactions. Longstanding efforts to produce novel, biologically active compounds by recombining intact modules to new modular PKSs have mostly resulted in poorly active chimeras and decreased product yields. Recent findings demonstrate that the low efficiencies of modular chimeric PKSs also result from rate limitations in the transfer of the growing polyketide chain across the non-cognate module:module interface and further processing of the non-native polyketide substrate by the ketosynthase (KS) domain. In this study, we aim at disclosing and understanding the low efficiency of chimeric modular PKSs and at establishing guidelines for modular PKSs engineering. To do so, we work with a bimodular PKS testbed and systematically vary substrate specificity, substrate identity, and domain:domain interfaces of the KS involved reactions. We observe that KS domains employed in our chimeric bimodular PKSs are bottlenecks with regards to both substrate specificity as well as interaction with the ACP. Overall, our systematic study can explain in quantitative terms why early oversimplified engineering strategies based on the plain shuffling of modules mostly failed and why more recent approaches show improved success rates. We moreover identify two mutations of the KS domain that significantly increased turnover rates in chimeric systems and interpret this finding in mechanistic detail.
The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus’ proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.
Die vorliegende Arbeit mit dem Titel Multiphoton Processes and Photocontrol of Biochemical Reaction Pathways befasst sich mit verschiedenen Strategien zur Implementierung von optischer Kontrolle in biochemisch relevanten Systemen. Auf systemischer Ebene wurde einerseits die Licht-getriebene Natriumpumpe Krokinobacter Eikastus Rhodopsin 2 (KR2) vor dem Hintergrund optogenetischer Anwendungen untersucht, und andererseits die Optimierung der wichtigsten photochemischen Parameter von photolabilen Schutzgruppen (PPG, engl. photolabile protecting group) angestrebt. Von der technisch-photophysikalischen Seite wurde ein weiterer Fokus auf den Aktivierungs- und Deaktivierungsschritt gelegt. Hierbei wurden vor allem Mehrphotonen-Prozesse betrachtet, die entweder durch simultane Absorption zweier Photonen zu einer spezifischen hoch-energetischen Anregung führen, oder durch sequentielle Absorption eine sukzessive Aktivierung und Deaktivierung eines Systems bewerkstelligen können. Auch wenn der Schwerpunkt dieser schriftlichen Arbeit auf den spektroskopischen Ergebnissen liegt, waren alle hier diskutierten Projekte stark kollaborativ und umfassten eine große Bandbreite verschiedener Techniken. Dies spiegelt den interdisziplinären Charakter vieler aktueller Fragestellungen in der photochemischen Forschung wider, die - in vielen Fällen - letztlich auf medizinische oder pharmazeutische Fortschritte abzielen.
Zunächst wurde die lichtgetriebene Natriumpumpe KR2 untersucht, die durch ihre mögliche Anwendung als optogenetisches Werkzeug bekannt wurde. In einer vergleichenden Studie der Natrium- und Protonenpumpmodi von KR2 konnten wichtige mechanistische Prinzipien für die Funktionalität des Proteins identifiziert werden. Dazu gehört die direkte Beteiligung spezifischer Strukturmerkmale wie die Aminosäure N112 und/oder der ECL1-Domäne am Ionen-Translokationsweg, sowie das enge Zusammenspiel zwischen dem Retinal und seinem Gegenion D116. Gleichzeitig bot diese IR-Studie einen der ersten mechanistischen Einblicke in den Protonenpump-Photozyklus in KR2, der deutlich weniger erforscht war. In Zusammenarbeit mit dem Arbeitskreis Glaubitz wurden die strukturellen Veränderungen des Chromophors und seiner Umgebung während der verschiedenen Photointermediate mittels DNP-verstärkter Festkörper-NMR und optischer Spektroskopie näher untersucht. Hier trugen zeitaufgelöste IR-Messungen in der HOOP (engl. hydrogen out of plane)-Moden-Region dazu bei, die dynamischen Veränderungen der Chromophorkonfiguration und -Verdrillung zu verfolgen. Es konnte gezeigt werden, dass Retinal im O-Intermediat tatsächlich zu seiner all-trans-Konfiguration reisomerisiert wird, aber im Vergleich zu seiner Dunkelzustandskonfiguration deutlich stärker verdreht vorliegt.
Dies wurde auch durch die Ergebnisse im nahen UV-Bereich bestätigt, welcher bei der Charakterisierung von mikrobiellen Rhodopsinen oft ausgelassen wird. Die neu gefundene Signatur erwies sich als SBS (engl. second bright state) der 13-cis-Konfiguration des Retinals, die mit der Bildung des O-Intermediats in KR2 verschwindet. Neben der offensichtlichen Verwendung als spektraler Marker wurde der SBS-Übergang auch bezüglich seiner Anwendbarkeit für optische Kontrollexperimente untersucht. Ähnlich wie beim BLQ (engl. blue light quenching)-Effekt war es möglich, den KR2-Dunkelzustand durch Anwendung von fs-Pulsen im nahen UV - ausgehend von einem photostationären Zustand - zu regenerieren. Durch Variation der Probenbedingungen war es möglich, gezielt K (pH~5) oder M (pH~9) anzusteuern, was sich auch in unterschiedlichen Deaktivierungs-Dynamiken äußerte. Diese Ergebnisse können zusammen mit dem hier vorgeschlagenen experimentellen Konzept als Grundlage für komplexere Multiphotonen-Sequenzen im Zusammenhang optogenetischer Fragestellungen verwendet werden.
Im Gegensatz zu den recht großen und komplexen Photorezeptoren bieten unter anderem PPGs einen feineren Weg, um biochemische Reaktionen gezielt zu steuern und auszulesen. In diesem Zusammenhang sind zwei Eigenschaften von großer Bedeutung: Einerseits die Fähigkeit der PPG, Photonen bestimmter Wellenlängen zu absorbieren, und andererseits die Effizienz der gewünschten photochemischen Reaktion. Der letztgenannte Aspekt wurde unter der Hypothese untersucht, dass die Verringerung der konkurrierenden Deaktivierungskanäle in PPGs zu einer höheren Quantenffizienz der Freisetzung führt. Dies wurde an DEACM-basierten Modellverbindungen getestet, die systematisch modifiziert wurden, um verschiedene Deaktivierungsprozesse des angeregten Zustands zu identifizieren. Durch das Hinzufügen eines zusätzlichen sechsgliedrigen Rings wurde die Freisetzungsausbeute im Vergleich zu DEACM um das 2- bis 3-fache erhöht. Dies konnte durch eine weitere Planarisierung des Systems mit einer zusätzlichen Doppelbindung an der C6-Position sogar noch weiter verbessert werden (bis zu einem Faktor von 5-6). Die Anregung des Cumarin-Rückgrats führt zu einem lokal-angeregten Zustand, der sich im Gleichgewicht mit einem Ladungstransferzustand befindet. In Abhängigkeit der lokalen Umgebung, die vor allem durch die Protizität und Polarität des Lösungsmittels bestimmt wird, wird der Ladungstransfercharakter eher stabilisiert oder gar destabilisiert. Die Ladungsverschiebung führt auch zu einer Abschwächung der spaltbaren C-C-Bindung, die eine Voraussetzung für die Freisetzungsreaktion ist. Darüber hinaus wurde gezeigt, dass der mit der Freisetzungsreaktion verbundene zusätzliche Zerfallskanal zu einer mehr als 2-fachen Verringerung der Lebensdauer des angeregten Zustands in den funktionalisierten PPGs führt. Diese Eigenschaft ist ein vielversprechender photophysikalischer Indikator für die Freisetzung der Abgangsgruppe, der durch spektroskopische oder - mit zusätzlicher räumlicher Auflösung - auch durch mikroskopische Techniken wie in der Fluoreszenzlebensdauer-Mikroskopie ausgelesen werden könnte...
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.
We examine the photoinduced excited state dynamics of pyrene modified adenosine, a versatile probe for folding and hybridization of ribonucleic acids. Measurements in different solvents revealed complex ultrafast dynamics, but high robustness since the overall fluorescence quantum yield (Φf) is hardly affected. The result is a strong fluorescent RNA-probe whose spectral properties change in a defined way upon environmental changes.
In the last twenty years, there has been splendid progress in energy conversion technologies to have sustainable energy sources. For example, solar cells contribute significantly to energy production as the sun is an enormous source for renewable energy. Currently, the most common commercialized photovoltaic devices are silicon-based. The scientists' main targets are high efficiency, low cost, environmentally friendly, and easy to synthesize new semiconductor materials to replace silicon. Furthermore, understanding the photophysical properties of these materials is very important for designing high efficient photoconversion systems.
This thesis investigates the photophysics of lead-based wide-bandgap perovskites with different dimensionality (2D, 3D) and how they can be optimized for optoelectronic applications. In chapter 1, we present the background and progress in perovskite research. The basic concepts of semiconductor and spectroscopic methods of the applied techniques in this work are discussed in chapter 2.
In the first project (chapter 3.1), we used our time-resolved techniques to study the ultrafast dynamics of energy transfer from the inorganic to the organic layer in a series of three lead-based mixed-halide 2D perovskites containing benzyl ammonium (BA), 1-naphthyl methyl ammonium (NMA), and 1-pyrene methyl ammonium (PMA) thin films.
In the second project (chapter 3.2), we used time-resolved spectroscopic techniques to study the effect of adding 5% of Cs on the dynamics of a mixed-cation wide bandgap bromide-based 3D perovskite.
In another side project (chapter 4), we present the photophysics properties of newly synthesized new Schiff bases containing indole moieties using piperidine as an organic base catalyst and Au@TiO2 as a heterogeneous catalyst. Finally, the results of this work are summarized in Chapter 5 with an outlook and a discussion of open questions for further research.
The human blood–brain barrier (BBB) represents the interface of microvasculature and the central nervous system, regulating the transport of nutrients and protecting the brain from external threats. To gain a deeper understanding of (patho)physiological processes affecting the BBB, sophisticated models mimicking the in vivo situation are required. Currently, most in vitro models are cultivated on stiff, semipermeable, and non-biodegradable Transwell® membrane inserts, not adequately mimicking the complexity of the extracellular environment of the native human BBB. To overcome these disadvantages, we developed three-dimensional electrospun scaffolds resembling the natural structure of the human extracellular matrix. The polymer fibers of the scaffold imitate collagen fibrils of the human basement membrane, exhibiting excellent wettability and biomechanical properties, thus facilitating cell adhesion, proliferation, and migration. Cultivation of human induced pluripotent stem cells (hiPSCs) on these scaffolds enabled the development of a physiological BBB phenotype monitored via the formation of tight junctions and validated by the paracellular permeability of sodium fluorescein, further accentuating the non-linearity of TEER and barrier permeability. The novel in vitro model of the BBB forms a tight endothelial barrier, offering a platform to study barrier functions in a (patho)physiologically relevant context.