Strukturelle Untersuchungen an Metabolit-bindenden Riboswitch-RNAs mittels NMR

  • Riboswitche sind hoch strukturierte RNA‐Elemente, die durch direkte Bindung von kleinen Metaboliten die Expression vieler bakterieller Gene kontrollieren. Sie bestehen aus einer Ligand‐bindenden Aptamerdomäne und einer so genannten Expressionsplattform. Im Zuge der Metabolitbindung an die Aptamerdomäne ändert sich die Konformation der Expressionsplattform. Diese Konformationsänderung führt zu einem vorzeitigen Abbruch der mRNA‐Transkription oder zu einer Inhibierung der Translationsinitiation. In Bacillus subtilis wurden zwei Klassen von Riboswitchen gefunden, die trotz einer sehr hohen Homologie in ihrer Primär‐  und Sekundärstruktur spezifisch zwischen den Purinen Guanin und Adenin unterscheiden. Durch den direkten NMR‐spektroskopischen Nachweis von Wasserstoffbrückenbindungen konnte der Bindungsmodus von Adenin, Guanin und von weiteren Purinliganden an diese beiden Klassen von Riboswitch‐RNAs beschrieben werden. Für beide Purin‐Riboswitche wurde ein gemeinsamer Bindungsmechanismus des Purinliganden an die RNA beobachtet. Hierbei bildet der Purinligand ein intermolekulares Basentripel mit der Riboswitch‐RNA aus. Die Spezifität der Metabolitbindung ist das Resultat eines intermolekularen Watson‐Crick Basenpaars zwischen dem gebundenen Liganden Guanin und einem Cytidin bzw. zwischen dem Liganden Adenin und einem Uridin der jeweiligen Riboswitch‐RNA. Zusätzlich wurde eine zweite Basenpaarung zwischen der Riboswitch‐RNA und dem gebundenen Liganden entdeckt, die in beiden Riboswitch‐Klassen identisch ist und ein weiteres Uridin der RNA und die N3/N9 Seite des Purinliganden einschließt. Diese Basenpaarung entsteht durch ein bislang unbeschriebenes Wasserstoffbrückenbindungsmuster, das zur Affinität der RNA‐Ligand‐ Wechselwirkung beiträgt. Die beobachteten intermolekularen Wasserstoffbrückenbindungen zwischen der RNA und dem gebundenen Purinliganden erklären die beobachtete Spezifitätsumkehrung einer C zu U Mutation in der Ligandbindungstasche der Riboswitch‐ RNA und die Unterschiede der Bindungsaffinitäten von verschiedenen Purinanaloga. Weiterhin wurden die Ligand‐  und Kation‐induzierten konformationellen Änderungen der isolierten Aptamerdomänen beider Purin‐bindenden Riboswitche und des gesamten Guanin‐ Riboswitches mittels NMR‐Spektroskopie untersucht. Demnach ist die Ligandbindungstasche in der Ligand‐ungebundenen Form unstrukturiert und Ligandbindung verläuft nach einem induced fit‐Mechanismus. Die Untersuchung der freien und Mg2+‐gebundenen Form der Ligand‐ungebundenen Aptamerdomäne zeigte Unterschiede zwischen den beiden eng verwandten Purin‐bindenden Riboswitchen. Während die Wechselwirkung zwischen den hoch konservierten Sequenzen der apikalen Schlaufen der Helix II und III in der Mg2+‐freien Form des Guanin‐Riboswitches vorgeformt ist, ist sie in der Mg2+‐freien Form des Adenin‐ Riboswitches nicht ausgebildet, wird jedoch in Gegenwart von Mg2+ ausgebildet. Es konnte gezeigt werden, dass dieser konformationelle Unterschied zwischen den Ligand‐ ungebundenen Purin‐Riboswitchen durch die Stabilität der apikalen Basenpaare in Helix II festgelegt wird. Die im Guanin‐Riboswitch gefundene stabile Schlaufen‐Schlaufen‐ Wechselwirkung kann auch außerhalb der Riboswitchsequenz existieren. Durch Mg2+, Mn2+ und Co(NH3)63+ Titrationen der Ligand‐gebundenen Purin‐Riboswitch Aptamerdomänen konnten spezifische Kationbindungsstellen lokalisiert werden, die in beiden Komplexen übereinstimmen und eine Rolle in der Stabilisierung der RNA‐Struktur spielen. Um die Sekundärstruktur des gesamten Guanin‐Riboswitches in seiner freien und Ligand‐ gebundenen Form zu untersuchen, wurden die NMR‐Spektren dieser RNA mit denen der freien und Ligand‐gebundenen isolierten Aptamerdomäne und der isolierten Terminator‐ und Antiterminatorelemente verglichen. Überaschenderweise bildet bereits die freie Form des gesamten Guanin‐Riboswitches das Terminatorelement und die Aptamerdomäne aus. Somit finden konformationelle Änderungen im Zuge der Ligandbindung einzig in der Aptamerdomäne statt. Weiterhin wurde die Struktur der freien und Ligand‐gebundenen Form einer verkürzten Guanin‐Riboswitch‐RNA untersucht. Diese RNA ist ein Modell für ein Transkriptionsintermediat, das durch eine der drei RNA‐Polymerase‐Ruhestellen induziert wird, die in der Riboswitch‐Sequenz aufzufinden sind. Interessanterweis schließen sich die Ligandbindung an die Aptamerdomäne und die Ausbildung des Antiterminators nicht gegenseitig aus, wie bisher angenommen. Die verkürzte RNA kann in Abhaengigkeit von verschiedenen experimentellen Bedingungen unterschiedliche Sekundärstrukturen annehmen. Das hat interessante Auswirkungen auf die Rolle der im Terminatorelement lokalisierten Transkriptionsruhestelle für den genregulatorischen Prozess und führt zu einem neuen Modell der Funktionsweise des Guanin‐Riboswitches.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jonas Noeske
URN:urn:nbn:de:hebis:30-54731
Referee:Harald SchwalbeORCiDGND, Bernd LudwigGND
Advisor:Harald Schwalbe, Jens Wöhnert
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/04/29
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2008/03/06
Release Date:2008/04/29
Page Number:175
HeBIS-PPN:198631480
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht