Charakterisierung des Zellzyklusses von Halobacterium salinarum

Characterization of the cell cycle of Halobacterium salinarum

  • H. salinarum ist einer von zwei archaealen Organismen, die synchronisiert werden können. Die Synchronisations-Methode konnte in dieser Arbeit optimiert werden. Nahezu 100 % aller Zellen teilen sich in einer Zeitspanne von einem Viertel der Generationszeit. Die Analyse zweier aufeinanderfolgender Zellzyklen zeigte, dass die Zellen sich auch im zweiten Zyklus synchron teilen. Die Zellsynchronisation wurde angewendet, um zellzyklusabhängige Vorgänge in H. salinarum auf unterschiedlichen Ebenen zu charakterisieren. Mittels DNA-Mikroarrays wurden Transkriptomänderungen untersucht. Nur 87 Gene zeigten zellzyklusspezifische Regulationen. Dies entspricht 3 % aller vorhergesagten offenen Leserahmen und ist somit im Vergleich zu allen anderen Organismen, deren Transkriptome untersucht wurden, deutlich geringer. Die Transkriptmengen von 15 ausgewählten Genen wurden mit Northern Blot Analysen verifiziert. Die regulierten Gene konnten in sieben Gruppen mit unterschiedlichen Transkriptprofilen eingeordnet werden. Gruppenspezifische DNA-Sequenzmotive wurden gefunden, von denen angenommen wird, dass sie in die zellzyklusspezifische Transkriptionsregulation involviert sind. Überraschenderweise wurden die meisten als Zellzyklusgene annotierten Gene konstitutiv transkribiert. Die Analyse zellzyklusabhängiger Proteomänderungen erfolgte mittels 2D-Gelelektrophorese. 1200 Proteine konnten reproduzierbar detektiert werden. Die meisten Proteine wurden konstitutiv exprimiert. Nur 30 Proteine zeigten eine zellzyklusabhängige Regulation. Dies entspricht 2,5 % der reproduzierbar detektierten Proteine. Es konnten unterschiedliche Expressionsprofile gefunden werden. Aus den Transkriptom- und Proteomanalysen folgt, dass auf Ebene der Genexpression nur wenige zellzyklusabhängige Regulationen existieren. Sekundäre Botenstoffe spielen eine wesentliche Rolle bei Signaltransduktionen und sind an Regulationen von Zellzyklen beteiligt. Eine Methode zur Messung intrazellulärer cAMP-Konzentration in H. salinarum konnte etabliert werden. Die basale cAMP-Konzentration von 200 µM in haloarchaealen Zellen ist bedeutend höher als die von Hefe. Synchrone Kulturen wurden auf die Oszillation des sekundären Botenstoffes hin untersucht. Es konnte gezeigt werden, dass die Konzentration zellzyklusabhängig zweimal kurzfristig signifikant erhöht wird. Die cAMP-Konzentration steigt einmal vor und einmal direkt nach der Zellteilung an. cAMP könnte daher ein wichtiges Signal für das Fortschreiten des Zellzyklusses sein. Es konnte eine Methode zur Analyse der Replikation in H. salinarum entwickelt werden. Hierfür wurde das Basenanalogon BrdU und ein spezifischer Antikörper gegen dieses verwendet. Die Analyse synchroner Kulturen zeigte das überraschende Ergebnis, dass die Zellen ihre DNA während des gesamten Zellzyklusses zu replizieren scheinen. Vor allem die DNA-Synthese in synchronen Kulturen während der Teilungsphase der Zellen stellt einen völlig neuartigen Zellzyklusablauf dar. Für in vivo Analyse von Zellzyklusproteinen können diese mit GFP markiert und fluoreszenzmikroskopisch analysiert werden. Mit dieser Methode konnten wichtige zellzyklusabhängige Aspekte in anderen Arten aufgeklärt werden. Für einen GFP-Modellversuch wurde in dieser Arbeit ein Fusionsgen bestehend aus den offenen Leserahmen von bop (bacterio-opsin) und gfp (green fluorescent protein) erstellt. Die Expression des chromosomalen bop Gens und des plasmidkodierten bop-gfp Fusionsgens wurde mit Northern Blot Analysen nachgewiesen. Die Purpurmembranbiogenese wurde fluoreszenzmikroskopisch in lebenden H. salinarum Zellen untersucht. Es stellte sich heraus, dass die Bildung der Purpurmembran ca. 15 Stunden nach Eintritt der Zellen in die stationäre Wachstumsphase beginnt. Innerhalb der folgenden sieben Stunden stieg sowohl die Anzahl an Zellen mit fluoreszierenden Signalen als auch die durchschnittliche Anzahl an Signalen pro Zelle gleichmäßig an. Die Ergebnisse zeigen, dass GFP-Fusionsproteine in H. salinarum z. B. zur Charakterisierung von differentieller Genexpression verwendet werden können. Des Weiteren könnten sie für die Untersuchung zellzyklusabhängiger Proteinlokalisation und für die Analyse der intrazellulären Verteilung putativer Cytoskelettproteine eingesetzt werden.
  • A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The synchrony persists at least for two cell division phases. The method was used to characterize different cell cycle-dependent processes. Genome wide DNA microarrays were applied for the analysis of cell cycle-dependent transcriptome changes. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start codon of the genes. The motifs are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Cell cycle-dependent proteome alterations were detected by 2D-gel electrophoresis. Approximately 1200 protein spots were reproducibly detected. Only 30 of these proteins showed differential expression patterns due to the cell cycle. Synchronized cultures were also utilized to identify putative small signalling molecules. H. salinarum was found to contain a basal cAMP concentration of 200µM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division and thus cAMP probably is an important signal for cell cycle progression. A method for the characterization of the replication phase was established, in contrast to other organisms no distinct S-Phase could be found. The cells seem to synthesize their DNA during the whole cell cycle. To analyze the cell cycle-dependent localization of proteins, a GFP fusion protein was created. Fluorescence microscopy showed that GFP-fusions can be used in H. salinarum.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anke Baumann
URN:urn:nbn:de:hebis:30-59924
Referee:Jörg SoppaORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/11/19
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2008/10/27
Release Date:2008/11/19
Tag:Halobacterium salinarum; cAMP; cell cycle; proteome; transcriptome
GND Keyword:Zellzyklus; Transkriptomanalyse; Halobacterium salinarium; Cyclo-AMP; Proteomanalyse
HeBIS-PPN:206764618
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht