Refine
Year of publication
Document Type
- Doctoral Thesis (8)
- diplomthesis (3)
- magisterthesis (1)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Ionenstrahl (2)
- Strahldynamik (2)
- Strahltransport (2)
- Teilchenbeschleuniger (2)
- Ablenkung <Physik> (1)
- Beam Shaping (1)
- Beam Transport (1)
- Chopper (1)
- Dumpingsystem (1)
- Emittance (1)
Institute
- Physik (11)
- Neuere Philologien (1)
Die im Rahmen dieser Arbeit gewonnen Meßergebnisse zeigen, daß bei geringem Restgasdruck der Einsatz einer GPL zur Fokussierung eines hochperveanten Ionenstrahles niedriger Strahlenergie Vorteile gegenüber konventionellen Linsensystemen bietet. Neben einer kostengünstigen Realisation ist wesentlich die bei unterschiedlichen Linsenparametern hohe Linearität der Linsenfelder (und die damit verbunden geringen Aberrationen) bei gleichzeitig starker Fokussierung zu nennen. Auch die geringe Baulänge, vor allem im Vergleich zu den wegen der FODO-Struktur bei Quadrupolen i. a. notwendigen Tripletts, kann gerade bei de- bzw. teilkompensiertem Transport einen Vorteil darstellen. Die im zweiten Kapitel vorgestellten Arbeiten zur theoretischen Beschreibung des nichtneutralen Plasmas der GPL haben gezeigt, daß bei Berücksichtigung der Verlustmechanismen (longitudinal und radial) die Beschreibung der Elektronenverteilung in der Linse die Meßergebnisse wesentlich besser widerspiegelt als in der klassischen Theorie Gabors, die nur einen idealisierten Zustand maximaler Elektronendichte beschreibt. Die Integration der Verluste in die Simulation ist für den longitudinalen Verlustkanal gelungen. Die radialen Verluste entziehen sich bisher aufgrund der Komplexität der Vorgänge bei der Diffusion einer hinreichend genauen Beschreibung. Dies liegt vor allem an einer sehr schwierigen Abschätzung der hierbei dominierenden Heiz- bzw. Kühlprozesse im Linsenplasma. ...
Im Rahmen dieser Arbeit wurde ein Strahllagemonitor entwickelt, der nur aufgrund der Signale aus den HOM-Dämpfern einer Linearbeschleunigerstruktur die Strahllage mit hoher Genauigkeit bestimmen kann. Ein solcher Monitor hat gegenüber anderen Konzepten einige einzigartige Vorteile. Der HOM-Dämpfer-Strahllagemonitor benötigt keine zusätzlichen Einbauten im Strahlrohr oder der Beschleunigerstruktur. Daher wird keine zusätzliche Länge benötigt. Auch wird eine zusätzliche Emittanzerhöhung durch zusätzliche Impedanzen der Einbauten vermieden. Beide Punkte sind wichtig für den Betrieb eines linearen Kolliders. Ein zweiter Vorteil ist die Messung der Strahllage bezüglich der elektrischen Achse der verwendeten Dipolmode. Wenn als Dipolmode die höhere Mode mit dem störendsten Einfluß auf den Strahl verwendet wird, verfährt die Positionsregelung der Struktur diese automatisch auf die Position, an der der Einfluß dieser Mode minimal ist. Da die anderen Dipolmoden ähnliche Feldgeometrien haben, ist anzunehmen, das ihr Einfluß damit auch weitestgehend minimiert wird. Zur eindeutigen Bestimmung der Strahlposition in der Ebene wurde ein Verfahren entwickelt, daß die Amplituden und die Startphasendifferenz zwischen einer Dipolmode und einer höheren Monopolmode ausnutzt. Durch passende Wahl der Hohlleitergeometrie kann eine monopolartigen Mode in den Dämpferzellen etabliert werden, die das nötige Monopolsignal liefert und in der Frequenz mit der Dipolmode übereinstimmt. Diese Mode vereinfacht erheblich die entwickelte Signalverarbeitungsschaltung. Die Shuntimpedanz dieser Mode wird durch die Geometrie der Hohlleiter bestimmt und kann so eingestellt werden, daß sie für den Betrieb des Strahllagemonitors ausreicht, aber den Strahl noch nicht nennenswert beeinflußt. Durch die Verwendung einer strahlinduzierten Monopolmode als Phasenreferenz ist der Monitor unabhängig von externen Referenzsignalen und funktioniert ohne eingeschaltete Beschleunigungshochfrequenz oder bei falscher Phasenlage des Strahls. Dies ermöglicht es, die Beschleunigerstrukturen auch dann genau zu justieren, wenn der restlichte Beschleuniger noch nicht richtig eingestellt ist oder wenn zu Wartungszwecken einzelne Sektionen während des Betriebs nicht mit Hochfrequenz versorgt werden. Um die Eignung des vorhandenen SBLC-HOM-Dämpfers als Strahllagemonitor zu überprüfen wurden dreidimensionale numerische Feldberechnungen im Frequenz- und Zeitbereich und Messungen an der Dämpferzelle durchgeführt. Für die Messungen ohne Strahl wurde ein Strahlsimulator konstruiert und aufgebaut, der computergesteuerte Messungen mit variablen Ablagen des simulierten Strahls mit einer Auflösung von 1,23 μm erlaubt. Da die vollständige 6 m lange, 180-zellige Beschleunigerstruktur nicht für Messungen zur Verfügung stand und sich auch mit den verfügbaren Computern nicht dreidimensional simulieren ließ, wurde ein eindimensionales ersatzkreisbasiertes Modell des Vielzellers untersucht. Das Ersatzbild aus 879 konzentrierten Bauelementen berücksichtigt die Verstimmung von Zelle zu Zelle, die Zellenverluste, die Dämpferverluste und die Strahlanregung in Abhängigkeit von der Ablage. An dem Ersatzkreis lassen sich die gefangenen Moden und die Wirkung der Dämpfer beobachten. Es liefert bei der Simulation im Zeitbereich als Ergebnis Signale, die verwendet wurden, um die Funktion der Signalverarbeitungsschaltung an der vollständigen Beschleunigerstruktur zu untersuchen. Das eindimensionale Modell hat jedoch auch einige Einschränkungen. Es berücksichtigt nicht die Änderung der Randbedingungen in den Einzelzellen in Abhängigkeit vom Phasenvorschub. Auch beschränkt sich die Simulation auf einen kleinen Teil des durch den Strahl angeregten Frequenzbereiches. Es ist nicht auszuschließen, daß andere Frequenzen die Signalverarbeitungsschalung negativ beeinflussen. Ebenfalls unberücksichtigt bleibt der Einfluß der von Sendeklystron eingespeisten Hochfrequenzleistung. Um diese Einflüsse zu untersuchen wäre es erforderlich, Messungen am realen 180-Zeller mit Strahl und Klystron durchführen zu können. Die vorgenommenen Messungen am Einzeller zeigen, daß das Meßprinzip funktioniert, der vorhandene HOM-Dämpfer als Strahllagemonitor verwendbar ist und die entwickelte Signalverarbeitungsschaltung geeignet ist genaue Positionsinformationen zu liefern. Abgesehen von den ober angesprochenen Einschränkungen bestätigen die Simulationen des 180-Zellers die Übertragbarkeit der Ergebnisse auf Vielzeller. Die Messungen und Simulationen lassen eine Auflösung des fertigen Strahllagemonitors am 180-Zeller in der Größenordnung 1–10 μm und eine relative Genauigkeit kleiner 6,2 % erwarten. Es hat sich gezeigt, daß zur Erzielung hohe Genauigkeit zwei Komponenten des Strahllagemonitors besondere Aufmerksamkeit zu schenken ist. Zum einen muß der HOM-Dämpfer mit den paarweisen Auskoppelstellen präzise, mit guter Symmetrie gefertigt sein. Zum anderen hat der 180°-Hybrid am Eingang der Signalverarbeitungsschaltung großen Einfluß auf die erzielbare Genauigkeit. Beide Komponenten sind wichtig, um die monopol- und dipolartigen Komponenten aus dem ausgekoppelten Signalgemisch sauber voneinander trennen zu können. Wie die Messungen zeigten, ist ein schmalbandiger, auf die verwendete Meßfrequenz spezialisierter, selbst gefertigter Ringhybrid für diese Aufgabe erheblich besser geeignet als ein kommerziell erhältlicher Breitbandhybrid. Bei dem Ringhybrid gibt es jedoch auch noch Verbesserungsmöglichkeiten. Der Ringhybrid wurde präzise gefertigt. Er hat jedoch keine Abgleichmöglichkeit. Eine Korrekturmöglichkeit der Amplitude und Phase an den Eingängen könnte die Auflösung und Genauigkeit noch etwas steigern. Wenn bei der Simulation ein idealer 180°-Hybrid angenommen wird verschwindet ein Großteil des Fehlers. Der nächste Schritt bei der Weiterentwicklung der Signalverarbeitung könnte darin bestehen, die zur Zeit noch getrennt aufgebauten Hochfrequenzkomponenten auf einer gemeinsamen Platine zu integrieren. Zusammen mit dem Mikroprozessorsystem auf einer zweiten Platine entsteht so ein kompaktes System, daß sich preisgünstig in der für einen linearen Kollider erforderlichen großen Stückzahl fertigen läßt.
Energy and environment are two major concerns in the 21st century. At present, the energy required for the daily life still mainly relies on the traditional fossil fuel resources, but the caused air pollution problem and greenhouse effect have seriously threatened the sustainable development of mankind. Another adopted energy source which can provide a large fraction of electricity for the world is the nuclear fission reaction. However, the increasing high-radioactive spent nuclear fuels, which half-lives are usually >1 million years, are becoming the hidden perils to the earth. A great advance in accelerator physics and technology opens an opportunity to solve this dilemma between man and nature, because powerful accelerator-based neutron sources can play important roles for clean nuclear power production, for example: - The Accelerator-Driven System (ADS) can serve as an easy control of a sub-critical fission reactor so that the nuclear fuels will be burnt more completely and safely. - The EUROTRANS project launched by EU is investigating another application of the ADS technology to reduce the radiotoxicity and the volume of the existing nuclear waste greatly and quickly in a transmutation way. - The developing international IFMIF plant will be used to test and qualify reactor materials for future fusion power stations, which can produce much cleaner nuclear electricity more efficiently than the fission ones. Therefore, the R&D of high-power driver linacs (HPDL) is of a worldwide importance. As the proverb said, "everything is hard at the beginning", the front end is the most difficult part for realizing an HPDL machine. Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hardon beams in the low- and medium-beta-region. Besides the 5mA/30mA, 17MeV proton injector (RFQ+DTL) and the 125mA, 40MeV deuteron DTL of the above-mentioned EUROTRANS and IFMIF facilities, a 200mA, 700keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200mA and 125mA, which are the record values for the proton and deuteron linacs, respectively. Though the design intensities for the two development stages, XT-ADS (5mA) and EFIT (30mA), of the EUROTRANS injector are well within the capability of the modern RF linac technology, the special design concept for an easy upgrade from XT-ADS to EFIT brings unusual challenges to realize a linac layout which allows flexible operation with different beam intensities. To design the 200mA FRANZ RFQ and the two-intensity EUROTRANS RFQ, the classic LANL (Los Alamos National Laboratory) Four-Section Procedure, which was developed by neglecting the space-charge forces, is not sufficient anymore. Abandoning the unreasonable constant- B (constant-transverse-focusing-strength) law and the resulting inefficient evolution manners of dynamics parameters adopted by the LANL method, a new design approach so-called "BABBLE", which can provide a "Balanced and Accelerated Beam Bunching at Low Energy", has been developed for intense beams. Being consistent with the beam-development process including space-charge effects, the main features of the "BABBLE" strategy (see Pages 55-58) are: 1) At the entrance, the synchronous phase is kept at = phi s = -90° while a gradual increase in the electrode modulation is started so that the input beam can firstly get a symmetrical and soft bunching within a full-360° phase acceptance. 2) In the following main bunching section, B is increasing to balance the stronger and stronger transverse defocusing effects induced by the decreasing bunch size so that the bunching speed can be fast and safely increased. 3) When the real acceleration starts, the quickly increased beam velocity will naturally weaken the transverse defocusing effects, so B is accordingly falling down to avoid longitudinal emittance growths and to allow larger bore apertures. Taking advantage of the gentle initial bunching and the accelerated main bunching under balanced forces enabled by the "BABBLE" strategy, a 2m-long RFQ with beam transmission in excess of 98% and low emittance growths has been designed for FRANZ, and a 4.3m-long RFQ with almost no beam losses and flat emittance evolutions at both 5mA and 30mA has been designed for EUROTRANS. All design results have proven that the "BABBLE" strategy is a general design approach leading to an efficient and robust RFQ with good beam quality in a wide intensity-range from 0mA to 200mA (even higher). To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions, e.g. long drift spaces, SC transverse focusing elements and high accelerating gradients. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the Linac Design for Intense Hadron Beams accelerating gradients and accordingly other configurations of the cavities (see Pages 78-80), a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements (see Pages 81-82) as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the phi s=0° sections have been totally redesigned (see Pages 83-84) resulting in good beam performances in both radial and longitudinal planes. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities, such as employing short adjustable rebunching cavities with phi s = -90° (see Page 116), have been applied. ...
Im Rahmen des Programms zur Intensitätserhöhung am Universal Linear Accelerator UNILAC für das Element Uran hat sich die Forderung nach einer Ionenquelle ergeben, die einen intensiven, hochbrillianten Ionenstrahl aus vierfach geladenen Uranionen bereitstellen kann. Ziel war es, im Zusammenspiel von Ionenquelle, Nachbeschleunigungssystem und Niederenergiestrahlführung einen Strahlstrom von mindestens 15 emA U4+ am Eingang des RFQ-Beschleunigers bereitzustellen. Die vorliegende Arbeit befaßt sich mit den Optimierungen und den experimentellen Untersuchungen an der Vakuumbogenionenquelle VARIS für den Uranbetrieb, welche schließlich ihre Leistungsfähigkeit an der Beschleunigeranlage der GSI erfolgreich unter Beweis gestellt hat. Der erste Teil dieser Arbeit widmet sich der Theorie der Vakuumbogenentladung unter besonderer Berücksichtigung der Erzeugung von U4+. Die Generierung von U4+ erfolgt dabei zu einem Teil im dichten Kathodenspotplasma, wo das Ionisationspotential von 31 auf 21 eV herabgesetzt ist, U4+ also bei vergleichsweise niedrigen Elektronenenergien erzeugt werden kann. Der U4+-Anteil beträgt jedoch nur 30 %. Die Erzeugung eines höheren Anteils an U4+ ist geknüpft an zusätzlich Ionisationsvorgänge im expandierenden Zwischenelektrodenplasma, für welches eine neuartige Theorie (MHD Ansatz) angegeben werden konnte. Für die Vakuumbogenentladung im axialen Magnetfeld konnte eine Erhöhung der Elektronentemperatur vorhersagt werden, die für eine höhere Ionisationsrate für U4+ verantwortlich ist. Für die Elektronentemperatur wurde bei einer magnetischen Flußdichte von 40 mT ein Wert von 10 eV vorhergesagt, welcher experimentell bestätigt werden konnte. Zieht man zudem die berechneten Wirkungsquerschnitte für die Ein- und Mehrfachionisation heran, so konnte aus den Wirkungsquerschnitten vorausgesagt werden, daß für die Produktion eines hohen Anteils an U4+ eine Elektronenenergie von zirka 50 eV für die Generierung von U4+ aus U3+ erforderlich ist. Im weiteren wurde ausgeführt, wie ein Extraktionssystem ausgelegt sein muß, welches den Forderungen nach einem Gesamtstrom von 140 mA entspricht oder diesen übertrifft. Das Erreichen dieses Stroms ist im Einlochextraktionssystem mit Schwierigkeiten verbunden (große Emissionsfläche, langes Extraktionssystem, Extraktionsspannung zirka 180 kV). Aus diesen Gründen ist die Entscheidung zugunsten eines Extraktionssystem mit 13 Öffnungen mit einem Durchmesser von jeweils 3 mm gefallen. Die Gesamtemissionsfläche aller Aperturen liegt bei 0,92 cm2. Zur Bestimmung der Strahlformierung einer Öffnung im Extraktionssystem ist das Strahlsimulationsprogramm KOBRA3INP unter Berücksichtigung einer experimentell gut zugänglichen Feldstärke von 11 kV/mm bei einem Aspektverhältnis von 0,5 genutzt worden. Es ergab sich ein minimaler Divergenzwinkel von etwa 55 mrad, die unnormierte effektive Emittanz geht mit steigender Stromdichte asymptotisch einem Wert von 65p mm mrad entgegen. Für das Extraktionssystem (13 Öffnungen) kann die unnormierte effektive Emittanz zu 610p mm mrad abgeschätzt werden. Die Stromdichte, welche der Plasmagenerator bereitstellen muß, beträgt etwa 1600 A/m2. Die Extraktionsspannung liegt bei 32 kV, welche, ebenso wie die Stromdichte, experimentell erreicht wurde. Bei den experimentellen Untersuchungen wurde zunächst untersucht, inwieweit die Impedanz des Vakuumbogenplasmas gesteigert werden kann. Ziel war es, eine möglichst hohe Plasmaimpedanz und damit eine hohe Bogenspannung zu erhalten, wodurch die erreichbare Elektronenenergie vergrößert wird (Regelung der Bogenspannung durch die Plasmaimpedanz). Es ist gezeigt worden, daß die Impedanz vor allem durch eine geeignete Magnetfeldkonfiguration erhöht werden kann (axiales Feld). Ebenso sind die Geometrie der Ionenquelle (Abstand Kathode-Anode 15 mm, Anodenöffnung 15 mm) und die verwendeten Materialien (Anode aus Edelstahl, kleiner Sputterkoeffizient und Sekundärelektronenaus97 löse) entscheidend, wobei zugunsten eines zuverlässigen Zündverhaltens der Ionenquelle die Entscheidung für eine Anodenöffnung von 15 mm statt 25 mm gefallen ist. So erreicht man für eine magnetische Flußdichte von 120 mT bei einem Bogenstrom von 700 A eine Bogenspannung von 54 V, wodurch die Erzeugung bis zu sechsfach geladenen Uranionen möglich wird. Um grundlegende Eigenschaften des Vakuumbogenplasmas zu bestimmen und das theoretische Modell zur Erzeugung von U4+ zu überprüfen, wurden die Ionen- und Elektronenenergieverteilung im Plasma gemessen ...
A strong interest is currently going on in the physics of high intensity and high energy beams: intense proton or deuteron beams are required in various fields of science and industry, including sources of neutrons for research experiments and material processing, nuclear physics experiments, tritium production and nuclear waste transmutation. High current heavy ion beams are envisaged for power production facilities (inertial fusion). Several projects presently under study are based on rf linacs as driver, sometimes followed by accumulation and/or compressor rings [Acc98]. The critical issue for all of them is to be operated in a low loss regime, because of activation problems in the structure. For this reason careful investigations have to be performed in order to understand and control the beam behaviour, aiming at conserving the beam quality, reducing the emittance growth and filamentation and avoiding the formation of halo. The beam current to be accelerated is actually limited by the amount of beam losses, which depends upon the beam halo: in order to reduce induced radioactivity and to allow for hands-on maintenance, normally losses <1 W/m are considered as acceptable [Sto96]. One of the major facilities under study is the European Spallation Source (ESS), a project based on a H- linac accelerating a 107 mA peak current beam (360 ns pulse in the DTL) and on two compressor rings, producing 5 MW average beam power [ESS]. Also the USA are developing a proposal for a Spallation Neutron Source (SNS), providing a short pulse H- beam with average power of 1÷2 MW; a 30 mA linac is required [SNS]. The Accelerator for Production of Tritium (APT), studied at Los Alamos, requires a 100 mA proton beam current (cw) to produce a power of 130÷170 MW [APT]. A similar but smaller accelerator (40 mA, 40 MW beam power) would serve as driver for the Accelerator Driven Transmutation of Waste (ADTW) system [ATW]. The accelerator system for the International Fusion Material Irradiation Facility (IFMIF) will test the behaviour of materials to be used for magnetic fusion (e.g. ITER); it consists of two 125 mA deuteron beams in parallel, to generate a fusion-like neutron spectrum with 10 MW cw [IFM]. In the field of heavy ions, for about 20 years scientists have been working on inertial confinement fusion, as an alternative to magnetic confinement one, to find a practical and cleaner method for producing energy. Nuclear fusion occurs when the nuclei of lighter elements (in a state of matter called "plasma") merge to form heavier elements; the extremely high temperatures and densities needed to get the nuclei to collide in the proper way and release big amounts of energy are obtained in a small "pellet" of fusion fuel, which receives energy from laser or ion beams, implodes and its inertia compresses it hard enough to hold together the plasma until it reaches ignition. Both laser and accelerator facilities have been investigated as drivers, since a demonstration of ignition at low gains is more easily accessible by lasers, whereas the intrinsic properties of accelerators -efficiency and repetition rate- will be essential for a medium-gain power plant. One study for a fusion power system driven by heavy ion beams (HIBALL) was completed in Europe already in 1982 [Bad81]. When the USA declassified essential information on pellet design, "indirect drive" targets have been considered openly, where the pellet is hit by X-rays generated from laser or ion beams rather than directly from the beams. Main progress has been achieved during the latest years in the understanding of pellet dynamics after ignition, i.e. in plasma physics [Sym1][Sym2][Sym3][Bas97][Lut97], imposing also new requirements on the layout of the driver accelerator facilities. In 1994-95 Frankfurt University and several other European laboratories (leaded by GSI) started a new collaboration called HIDIF (Heavy Ion Driven Ignition Facility) in order to simplify the accelerator plant design owing to the new technique of indirectly driven targets and to some technological improvements. First studies were oriented towards the conceptual goal of a facility providing just enough beam energy for the ignition of fusion reactions at very low gain (a "proof of principle") [Hof98]. In a recent phase of the study, it was realized that the proposed concept would make this scheme a more appropriate choice for energy production rather than for ignition; the acronym HIDIF was therefore intended as Heavy Ion Driven Inertial Fusion, and the parameters are going to be modified accordingly [Hof96][Hof97][Hof98]. The scenario presently discussed by this group proposes the formation and acceleration of an intense beam (400 mA) of singly charged heavy ions of three different atomic species, with mass differences of about 10% (the reference one is 209Bi+) in a main rf linac; they are then injected into some storage rings at an energy of 50 MeV/u, bunched in induction linacs and finally transported to a target with different velocities in such a way that the three species merge on the pellet ("telescoping") at 500 TW peak power. In this thesis the main linac of the HIDIF proposal is extensively investigated as an example of a high intensity heavy ion linac. Results are presented from numerical simulations of multi-particle beam dynamics carried out for the first time in this context. After a short presentation of the HIDIF reference scenario (Ignition Facility), including a discussion of the motivations for a high current heavy ion linac, some elements of the theory of beam transport and acceleration are recalled [Con91][Hof82][Kap85] [Lap87][Law88][Mit78][Rei94][Str83]. Then the used simulation programs are described, and a particle dynamics layout of a conventional 200 MHz Alvarez DTL is discussed with respect to low emittance growth at high transmission, including large space-charge effects, taking into account the influence of different kinds of statistical errors and of input mismatch on the beam dynamics. The modifications needed for "telescoping" are investigated with simulations for the nominal mass difference (10%) and for a smaller one (5%); finally the transfer line between DTL and rings is discussed and studied both analytically and by numerical calculations. The large mass number (A= 209) helps to reduce the space-charge effects with respect to protons, therefore the behaviour of the beam is not space-charge dominated. Nevertheless the tune depression values (similar to those of the ESS linac e.g.) indicate that these effects cannot be neglected. For a linac with low duty cycle, as in the case of an ignition facility, the results from particle dynamics calculations can be considered as a reliable guideline for the DTL layout, since they indicate that such a high intensity linac can fulfill the requirements on smooth beam behaviour and low losses.
Es wurde für Protonen- und Deuteronenbeschleuniger unter Extrembedingungen (hoher Ionenstrom, Dauerstrichbetrieb, Niedrigenergieabschnitt) ein Vergleich zwischen der konventionellen RFQ-Alvarez-DTL-Kombination und einer erstmals am IAP für diese Zwecke entwickelten RFQ-H-DTL-kombination durchgeführt. Insbesondere die Auslegung der Teilchendynamik von HF-Driftröhrenlinearbeschleunigern und RFQ's für leichte Ionen unter Miteinbeziehung der Raumladung und der Forderung nach Dauerstrichbetrieb sind Thema der vorliegenden Arbeit. Die vorgestellten Beschleuniger müssen extrem hohen Anforderungen an Transmission (Stromverlustrate << 3 µ A/m nach dem RFQ), Stabilität (stetige Strahldynamik bei Strahlfehlanpassung und Berücksichtigung von mechanischen und optischen Toleranzen), Anlagensicherheit ("Hands-on-Kriterium") und -zuverlässigkeit (Anlagenverfügbarkeit > 80 %) bei hoher HF-Effizienz (optimierte Shuntimpedanzen, Laufzeitfaktoren und Oberflächenstromdichten) genügen. Es wurden exemplarisch im Rahmen von zwei aktuellen Hochstromprojekten mit Dauerstrichbetrieb teilchendynamische DTL-Entwürfe für den mittleren Energiebereich (0.1 = ß = 0.34) durchgeführt: einmal für das ADS/XADS Projekt (Hier: 40 mA, 350/700 MHz 24 MW, Protonen, CW) und als extremes Beispiel das IFMIF Projekt (125 mA, 175 MHz, 5 MW, Deuteronen, CW). Da IFMIF hinsichtlich Transmissionseffizienz und Strahlstrom in Verbindung mit einem 100 %-Tastverhältnis wohl einzigartig ist, mussten besonders intensive Anstrengungen für den Test der Robustheit des teilchendynamische Entwurfs der DTL-Strukturen unternommen werden. Hierzu wurde der gesamte Injektorpart vom Eingang des Referenz Four-Vane-RFQ bei 0.1 MeV bis zum Ausgang des DTL bei 40 MeV als ganzes simuliert, unter Einbeziehung von optischen, HF- und mechanischen Toleranzen. Diese Rechnungen machten deutlich, dass die Einbringung einer kompakten Strahltransportstrecke (MEBT) zwischen RFQ und DTL notwendig ist, um den Strahl transversal und longitudinal ohne Teilchenverluste an den nachfolgenden DTL anzupassen. Man gewinnt dadurch auch zusätzliche Möglichkeiten für Strahljustierung und -diagnose. Infolgedessen gehört ein MEBT mittlerweile zum Referenz-Design, welches einen 175 MHz Four-Vane-RFQ als Vorbeschleuniger vorsieht und nach dem MEBT einen 175 MHz Alvarez-DTL mit FoDo-Fokussierschema. Die Designkriterien für IFMIF gelten uneingeschränkt auch für das ADS/XADS Projekt und infolgedessen wurde ebenfalls erstmals eine Auslegung des Mittelenergieabschnitts des ADS/XADS-Beschleunigers, der unmittelbar nach dem 350 MHz RFQ bei 5 MeV anfängt und bis ~ 100 MeV reicht, mit der neuen supraleitende CH-Struktur unternommen. Der Hochenergiebereich von 100 MeV bis 600 MeV wird im Referenzentwurf mit den bereits bewährten supraleitenden elliptischen Kavitäten mit einer Resonanzfrequenz von 700 MHz abgedeckt [ADS]. Die umfangreichen Untersuchungen inklusive Toleranzabschätzungen ergaben, dass eine Kette von zehn supraleitenden CH-Resonatoren mit Zwischentankfokussierung (Ausnahme das Modul 1) für diese Anwendung bestens geeignet ist. Des weiteren ergab sich, dass ein Frequenzsprung auf 700 MHz nach dem 6-ten CH-Modul bei einer Energie von ~ 56 MeV die Beschleunigungs- und HF-Effizienz erhöht. Außerdem wird dadurch der Strahl ideal an den Hochenergieabschnitt angepasst. Im Rahmen dieser Arbeit wurden neue Driftröhrenlinearbeschleunigerstrukturen vorgestellt (normal leitender IH-DTL, supraleitender CH-DTL), die für bis zu 10 MW Strahlleistung, 125 mA Strahlstrom und höchsten Tastverhältnissen geeignet sind. Ferner konnte durch geschickte Wahl der Strukturparameter und Arbeitspunkte eine gute Teilchendynamik mit einem moderaten Emittanzwachstum erzielt werden: Strahltransport und -beschleunigung ohne Teilchenverluste, starke transversale und longitudinale Fokussierung, große Aperturfaktoren und höchste HF-Effizienz sind gleichzeitig erreichbar. Somit stellen die neuen H-Moden Driftföhrenbeschleuniger vor allen Dingen in der supraleitenden Ausführung (CH-DTL) eine tragfähige Basis für alle weiteren geplanten Hochintensitätsbeschleunigeranlagen dar.
In der vorliegenden Arbeit wird ein schnelles Choppersystem für einen hochintensiven niederenergetischen Protonenstrahl untersucht. Das Choppersystem wird in der Niedrigenergiesektion (LEBT) der Frankfurter Neutronenquelle FRANZ eingesetzt. Der Treiberstrahl hat dort eine Energie von 120 keV und eine Intensität von bis zu 200 mA Protonen. Gefordert ist die Erzeugung eines gepulsten Strahls mit einem 50 bis 100 ns langen Pulsplateau und einer Wiederholrate von 250 kHz. Nach der Diskussion verschiedener Chopperkonzepte wird der Einsatz eines Kickersystems vorgeschlagen. Magnetische und elektrische Kicker werden im Hinblick auf Geometrie, Ablenkfelder, Strahldynamik, Emittanzwachstum, Leistungsbedarf sowie Betrieb im Schwingungs- oder im Pulsmodus untersucht. Die Realisierung des Choppersystems wird mit Hilfe von numerischen Simulationen und Vorexperimenten geprüft. Ein eigens dazu entwickelter Particle-in-cell (PIC)-Code wird vorgestellt. Er erlaubt die Simulation von Vielteilchen-Prozessen in zeitabhängigen Kickerfeldern unter Berücksichtigung der Effekte der Sekundärelektronen. Die Vorexperimente für die Ansteuerung des Kickers werden präsentiert. Für den magnetischen Kicker wurde eine niederinduktive Testspule und für den elektrischen Kicker ein Transformator bestehend aus einem nanokristallinen Ringbandkern aufgebaut. Abschließend werden die beiden Systeme miteinander verglichen. Ein magnetischer Kicker ist auch bei hohen Strahlintensitäten weniger anfällig für Strahlverluste und kann ohne die Gefahr von Spannungsdurchschlägen betrieben werden. Bei den geforderten hohen Wiederholraten ist jedoch der Leistungsbedarf nicht annehmbar, so dass im Ausblick die Weiterentwicklung eines elektrischen Kickersystems vorgeschlagen wird.
Im Rahmen dieser Diplomarbeit wurde eine Detektor-Sonde entwickelt, um Strahlprofile eines Ionenstrahls entlang der gekrümmten, geometrischen Achse eines Toroidsektormagneten zu messen. Bei der Konstruktion der Sonde musste die zuverlässige Messwerterfassung im Vakuum und innerhalb magnetischer Felder von bis zu 0,6 T berücksichtigt werden. Im theoretischen Teil werden die Theorie zum Strahltransport in den verwendeten Bauteilen, sowie die Funktionsweise eines Phosphor-Schirms (P20) dargelegt. Im experimentellen Teil wird die bewegliche Sonde, der verwendete Versuchsaufbau, sowie die Messungen und deren Auswertung näher beschrieben. Im abschließenden Fazit wird auch auf Alternativen zu der verwendeten Messmethode und deren Vor- und Nachteile eingegangen.
Bei den Projekten wie der Europäischen und der Amerikanischen Spallationsneutronenquelle aber auch den geplanten aktuellen Großprojekten wie dem Upgrade von CERN oder ISIS werden negative Ionen benötigt. Bei solchen Anlagen werden am Ende des üblichen linearen Beschleunigers Speicherringe eingesetzt, die den Teilchenstrom akkumulieren und danach longitudinal komprimieren. Durch die Verwendung eines Strahls aus negativen Ionen kann die Injektion in den Speicherring wesentlich vereinfacht werden. In der vorliegenden Dissertation wurde die Extraktion und der Transport von negativen Wasserstoffionen für den ersten Abschnitt eines Linearbeschleunigers, bestehend aus Quelle, Extraktion und niederenergetischem Strahltransport (LEBT), sowohl experimentell als auch theoretisch untersucht. In dieser Sektion wird der grundlegende Strahlstrom und die Strahlqualität eines Linearbeschleunigers definiert. Eine komplette Untersuchung dieses Abschnitts lag bis dato für negative Ionen nicht vor. Um die Unterschiede aufzudecken und die einflußnehmenden Größen zu bewerten, mußten alle Experimente sowohl mit positiven als auch mit negativen Ionen durchgeführt werden. In allen Sektionen führen verschiedene Faktoren zu Strahlstromverlusten und Qualitätsverschlechterung, sprich Emittanzvergrößerung. Im Zuge dieser Arbeit wurde eine Quelle für negative Ionen entwickelt und gebaut und eine neue Methode zur Produktionssteigerung von negativen Ionen entwickelt. Die Innenwand der Plasmakammer der Ionenquelle wurde mit dem Edelmetallkatalysator Platin beschichtet. Die Plasmazusammensetzung innerhalb der Quelle verlagerte sich dadurch auf 80–90% H3 , 5-10% H2 und nur noch ein geringer Anteil an Protonen. Dieser hohe molekulare Anteil war über eine große Spanne aller Plasmaparameter stabil und führt zu einer drastischen Produktionssteigerung von angeregtem H2 und H- . Zur Formierung des Ionenstrahls wurde von mir ein sogenannter stromtoleranten Extraktor entwickelt. Trotz einer Veränderung des extrahierten Stroms um den Faktor 5 kommt es mit diesem Extraktor zu keinem nennenswerten Emittanzwachstum. Dieser eignet sich allgemein für die Extraktion gepulster Ionenstrahlen, im Besonderen aber für die Extraktion von negativen Ionen, da hierbei gleichzeitig Elektronen mit extrahiert werden. Dieser meist hohe Strahlanteil aus hochenergetischen Elektronen muß vor dem Einschuß der negativen Ionen in den RFQ durch ein geeignetes System aus dem Strahl ausgelenkt und abgeführt werden. Grundlagen, Entwicklung und Einflüsse dieser sogenannten Dumpingsysteme werden in Kap. 5 beschrieben. Für die Realisierung einer Niederenergietransportstrecke für negative Ionen stehen die beiden Möglichkeiten des magnetischen LEBT (Kap. 6) und des elektrostatischen LEBT (Kap. 7) zu Verfügung. Mit verschiedenen Meßaufbauten werden im anschließenden Kap. 8 die in den vorigen Kapiteln aufgeführten relevanten Größen der Erzeugung, der Extraktion und des Transport experimentell untersucht. Zusätzlich zu den bekannten klassischen Analyseverfahren kommen im Rahmen dieser Arbeit entwickelte optische Meßmethoden zum Einsatz, mit deren Hilfe man Plasmatemperatur und Plasmaverteilung innerhalb der Ionenquelle bestimmen kann. Mit Hilfe der Untersuchungen gelang es, die Unterschiede zwischen der Extraktion von negativen Ionen und von positiven Ionen aufzuzeigen und mit Hilfe der experimentellen Beobachtungen ein neues Modell für die Extraktion von negativen Ionen zu entwickeln. Mit der vorliegenden Arbeit wurde zudem gezeigt: - Der extrahierbare negative Strom ist hauptsächlich abhängig vom Diffusionsprozeß der Teilchen durch einen positiven Potentialwall innerhalb der Ionenquelle. - Durch Kompensation der magnetischen Felder in der Extraktionsregion wird die Emittanz reduziert und der Strom gesteigert. - Der beobachtete planare Plasmameniskus wird maßgeblich durch die rückfließenden Restgasionen beeinflußt. - Der Transport der negativen Ionen mit einer magnetischen LEBT stellt kein wesentliches Problem dar, da eine hinreichende Anzahl an positiven Restgasionen für den raumladungs-kompensierten Transport vorliegt.
Es wurde eine neue Routine zur Berechnung der Raumladungskräfte basierend auf einer schnellen Fourier-Transformation entwickelt und in das Teilchensimulationsprogramm LORASR integriert. Dadurch werden einzelne oder bis zu mehreren 100 Simulationen im Batch-Modus mit je 1 Million Makroteilchen und akzeptablen Rechenzeiten ermöglicht. Die neue Raumladungsroutine wurde im Rahmen der Europäischen „High Intensity Pulsed Proton Injectors” (HIPPI) Kollaboration erfolgreich validiert. Dabei wurden verschiedene statische Vergleichstests der Poisson-Solver und schließlich Vergleichsrechnungen entlang des Alvarez-Beschleunigerabschnittes des GSI UNILAC durchgeführt. Darüber hinaus wurden Werkzeuge zum Aufprägen und zur Analyse von Maschinenfehlern entwickelt. Diese wurden erstmals für Fehlertoleranzstudien an der IH-Kavität des Heidelberger Therapiebeschleunigers, am Protonen-Linearbeschleuniger für das FAIR Projekt in Darmstadt sowie am Vorschlag eines supraleitenden CH-Beschleunigers für die “International Fusion Materials Irradiation Facility” (IFMIF) eingesetzt.