Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Medizin (3)
- Biowissenschaften (1)
- Pharmazie (1)
NOSTRIN belongs to the family of F-BAR proteins, which are multi-domain adaptor proteins that have emerged as important regulators of membrane remodeling and actin dynamics in a variety of vital cellular processes. They have been analyzed structurally and biochemically and overexpression studies have revealed their potential in inducing membrane curvature and tubulation. Several studies have begun to decipher the function of individual proteins, but the understanding of F-BAR protein functions in vivo is still quite limited. The F-BAR protein NOSTRIN is mainly expressed in endothelial cells and has originally been described as interaction partner of the endothelial nitric oxide synthase (eNOS), modulating eNOS subcellular localization. The phenotypic characterization of NOSTRIN knockout mice revealed decreased nitric oxide (NO) and cGMP levels, an increase in systolic blood pressure and an impairment of the acetylcholine-induced, NO-dependent relaxation of aortic rings from mice with global as well as endothelial cell-specific knockout of the NOSTRIN gene (ECKO) . These findings implied that NOSTRIN plays a role in regulating NO production in vivo, but the underlying molecular mechanisms were unclear. Therefore, this study was aimed at addressing the mechanism causing the inhibited vasodilation specifically upon stimulation with acetylcholine in NOSTRIN KO and ECKO mice, and at exploring additional roles of NOSTRIN in the signal transduction of endothelial cells.
The major acetylcholine receptor that mediates vessel relaxation upon stimulation with acetylcholine is the muscarinic acetylcholine receptor subtype M3 (M3R). In the present study NOSTRIN was identified as novel interaction partner of the M3R and important factor for the correct spatial distribution and functionality of the M3R. Moreover, it provides the first example of an F-BAR protein regulating a GPCR. Confocal immunofluorescence microscopy analysis of isolated aortae from NOSTRIN KO and WT mice indicated that NOSTRIN was necessary for the proper subcellular localization of the M3R and targeted it to the plasma membrane. A series of pulldown experiments revealed a direct interaction of NOSTRIN with the M3R. The binding required the SH3 domain of NOSTRIN and the third intracellular loop of the M3R, which has a recognized role in receptor regulation. The interaction of NOSTRIN with the M3R was confirmed by co-localization of NOSTRIN and the M3R upon overexpression in mammalian cells. Expression levels of the M3R as well as eNOS were not affected by the loss of NOSTRIN in accordance with the finding, that NOSTRIN impacts on the acetylcholine/eNOS signaling axis through regulation of the subcellular trafficking of its binding partners.
Furthermore, there were first indications for a role of NOSTRIN in facilitating the carbachol-induced calcium response in M3R-expressing cells, suggesting that NOSTRIN might influence M3R activation. in the absence of NOSTRIN, the function of the M3R in mammalian cells overexpressing the M3R was markedly impaired, resulting in abolition of the calcium response to the M3R agonist carbachol. In accordance, the activated eNOS fraction associated with the Golgi complex was markedly reduced in aorta explants from NOSTRIN knockout and ECKO mice. Moreover, NOSTRIN knockout inhibited the carbachol-induced, activating phosphorylation of eNOS in murine aortae as well as primary mouse lung endothelial cells confirming its role as important regulator of eNOS activity in vivo.
G-Protein-gekoppelte Rezeptoren (GPCR) sind im Immunsystem essentiell für die Verarbeitung von Signalen, die von Chemokinen, Lipiden und anderen Botenstoffen ausgehen. Ihre Existenz gewährleistet, dass Leukozyten sowohl unter physiologischen als auch unter pathophysiologischen Umständen ihren Funktionen als Immunzellen nachkommen können. Grundlegend wichtig für das angeborene Immunsystem sind die GPCR, die die Weiterleitung ihrer Signale über G-Proteine vom Typ Gi vermitteln. Die Migration, Adhäsion und Differenzierung von Leukozyten wird jedoch auch maßgeblich durch G12/13-gekoppelte Rezeptoren reguliert, wobei die kleine GTPase RhoA als Effektormolekül eine wichtige Rolle spielt. Die Bedeutung der G12/13-gekoppelten Signaltransduktion in Makrophagen ist allerdings weitgehend unverstanden. Mit Hilfe einer Mauslinie, in der speziell und ausschließlich in myeloiden Zellen die beiden G-Protein-Untereinheiten Gα12 und Gα13 durch ein konstitutiv aktives Cre-Rekombinase-System inaktiviert wurden (Lys-Gα12/Gα13-KO), sollte nun die Funktion und der genaue Mechanismus des G12/13-gekoppelten Signalweges in Monozyten und Makrophagen aufgeklärt werden und somit neue Erkenntnisse zur Rolle der GPCR im Immunsystem gewonnen werden.
Eine erste Untersuchung der peripheren Immunzellpopulationen des Lys-Gα12/Gα13-KO ergab, dass residente Gewebemakrophagen, im Speziellen die des Peritoneums, in ihrer Anzahl erhöht sind. In einer vertieften Analyse der residenten peritonealen Makrophagen (rpMP) konnte gezeigt werden, dass der Verlust von Gα12/13 zu Veränderung im Zytoskelett der Makrophagen führt. Die Zellen entwickeln einen Phänotyp mit besonders langen und verzweigten Filopodien und zeigen Ein-schränkungen in ihrer basalen Beweglichkeit.
Über diesen morphologischen Befund hinaus, konnte in einer Studie zur Gen-expression in diesen Zellen festgestellt werden, dass Gα12/13-defiziente Makrophagen verstärkt proinflammatorische Gene wie Nos2, die Cyclooxygenase 2 aber auch verschiedene Chemokine wie Cxcl10 oder Cytokine wie Il-6 oder Tnfα exprimieren. Ein ähnlicher Phänotyp in Bezug auf Morphologie und Genexpression wurde bei der Untersuchung von Makrophagen, die aus Knochenmark des Lys-Gα12/Gα13-KO generiert wurden, beobachtet.
Als vermutlich verantwortlicher G12/13-gekoppelter Rezeptor konnte der S1P-Rezeptor-subtyp 2 (S1P2) identifiziert werden. Mit Hilfe von Inhibitoren für die G12/13-gekoppelte Signaltransduktionskaskade konnte gezeigt werden, dass über die kleine GTPase RhoA die NF-κB-abhängige Genaktivität reguliert werden kann. Vermutlich aktiviert RhoA dazu die Rho Kinase ROCK, die wiederum das untergeordnete Effektormolekül Rac1 hemmen kann. Im Falle des Lys-Gα12/Gα13-KO führt eine reduzierte Aktivierung von RhoA insgesamt zu einer eingeschränkten Hemmung dieses Signalweges und im Folgenden zu einer außer Kontrolle geratenen Induktion entzündungsrelevanter Gene und damit einhergehend auch zu einer Veränderung des Milieus in der Bauchhöhle dieser Tiere.
Obwohl die Immunantwort in diesen Tieren auf klassische Pathogene wie Lipopolylsaccharide (LPS) unverändert ist, konnte ein Anstieg an peritonealen B-Zellen festgestellt werden. Diese B-Zellen, insbesondere B1 B-Zellen, sind als wichtige Produzenten von natürlichen Antikörpern gegen endogene Pathogene bekannt. Die Analyse von Plasma aus Lys-Gα12/Gα13-KO-Mäusen ergab einen erhöhten Titer für natürliche Antikörper wie beispielsweise gegen oxidierte Formen von atherogenen Lipoproteinen. Diese Erkenntnis führte zu der Frage, ob die ursprünglich pro-inflammatorischen Veränderungen der peritonealen Makrophagen einen indirekten, positiven Einfluss auf die Entwicklung einer Atherosklerose haben können. Interessanterweise sind die Tiere des Lys-Gα12/Gα13-KO signifikant vor Atherosklerose geschützt und die Existenz der natürlichen Antikörper in atherosklerotischen Läsionen wird als Hinweis für ihre protektive Rolle im Krankheitsverlauf angesehen. In einem therapeutischen Ansatz mit peritonealen Zellen konnte in Atherosklerose-gefährdeten Tieren die Progression dieser Gefäßerkrankung eingedämmt werden.
Die hier durchgeführte Studie hat durch in vitro und in vivo Versuche mit Lys-Gα12/Gα13-KO-Mäusen dazu beitragen, das Verständnis der Rolle der G12/13-gekoppelten Signaltransduktion im Immunsystem zu verbessern.
Die Komplexität der verschiedenen Funktionen einzelner Effektormoleküle einerseits und die Interaktionen unterschiedlicher Immunzellpopulationen andererseits lassen jedoch vermuten, dass noch weitreichende Untersuchungen an GPCR und G-Proteinen nötig sind, um diese für den Organismus bedeutsamen Informationssysteme voll-ständig zu verstehen und weiter therapeutisch nutzbar zu machen.
Background and Aim: Genome-wide association studies revealed a strong association between cardiovascular diseases (CVD) and clonal hematopoiesis of indeterminate potential (CHIP), highlighting one of its most common CHIP-driving mutations-TET2 (ten-eleven translocation 2), as a target for CHIP related CVD research. Our lab has established the generation of self-organizing cardiac organoids (SCO), which demonstrate the cellular composition and organization of the native human heart, and mimics human myocardial responses to stress stimulation. This project aims to examine whether SCOs would be an appropriate CHIP model and decipher promising drugs for cardiovascular CHIP treatment.
Methods: To study TET2-mutant cardiovascular CHIP, we set up the TET2 cardiac-CHIP model through a knockdown (KD) of TET2 in myeloid cells that infiltrated our lab-made SCO. Immunofluorescence and qPCR were performed to ascertain TET2-KD myeloid cell infiltration, SCO fibrosis, and apoptosis assessments. SCO fibrosis was further analyzed by immunofluorescence staining, and cardiac contractile frequency and amplitude were determined by calcium flux analysis. Finally, RNAseq was performed to analyze transcriptomic changes in drug/vehicle-treated TET2-KD myeloid cells and the TET2 cardiac-CHIP model.
Results: The TET2 cardiac-CHIP model resulted in significantly increased inflammation in SCO, accompanied by fibrosis and more cleaved Caspase-3, causing cardiomyocytes apoptosis and promoting the release of cTNT. The shortlisted drugs revealed a reduction of proliferation in TET2-KD myeloid cells, decreased pro-inflammatory cytokines, and a higher apoptosis level. Furthermore, the TET2 cardiac-CHIP model treated with selected drugs showed a remarkable decline in TET2-KD myeloid cell infiltration and pro-inflammation cytokines, cardiomyocyte apoptosis, fibrosis, and lowered cTNT levels, while drug control groups were not affected. Moreover, the drug treatment groups improved the heartbeat frequency and amplitude accessed by the calcium transient assay. RNAseq data also validated the above findings.
Conclusions & Discussion: Our results indicate that SCOs are an efficient pre-clinical model for studying and validating CHIP genes and drug interactions. Our data revealed that TET2-KD myeloid cells invade SCO and secrete pro-inflammatory cytokines, which promote apoptosis of cardiomyocytes and the release of cTNT. In this regard, our TET2 cardiac-CHIP model matches the inflammatory phenotype previously characterized in CHIP patients. Nevertheless, this phenotype could be rescued using positive drug candidates (Clopidogrel, R406, and Lanatoside C) selected by this project, emphasizing the significant value of our TET2 cardiac-CHIP model for drug screens and pre-clinical validation studies. Furthermore, among these three drug candidates, we found Lancatoside C, as proved by FDA/EMA, showed an unmet possibility for clinical therapeutic demand, insinuating potential benefit in repurposing Lanatoside C for the treatment of TET2-mutant cardiovascular CHIP.
Angiogenesis, the formation of new blood vessels from existing ones, is a fundamental biological process required for embryonic development; it also plays an important role during postnatal organ development and various physiological and pathological remodeling processes in the adult organism. Vascular endothelial growth factor (VEGF) and its main receptor, VEGF receptor-2 (VEGFR-2), play a central role in angiogenesis. VEGFR-2 expression is strongly upregulated in angiogenic vessels, but the mechanisms regulating VEGFR-2 expression are not well understood. We found in this study that the G-protein α subunit Gα13 plays an important role in the regulation of VEGFR-2 expression. In vitro, we found that knockdown of Gα13 reduced VEGFR-2 expression in human umbilical vein endothelial cells and impaired responsiveness to VEGF-A. This phenotype was rescued by adenoviral normalization of VEGFR-2 expression. Gα13-dependent VEGFR-2 expression involved activation of the small GTPase RhoA and transcription factor NF-κB; it was abrogated by deletion of the NF-κB binding site at position -84 of the VEGFR-2 promoter. In vivo, endothelial cell-specific loss of Gα13 resulted in reduced VEGFR-2 expression, impaired responsiveness towards VEGF-A in Matrigel assays, and reduced retinal angiogenesis. Importantly, also tumor vascularization was diminished in the absence of endothelial Gα13, resulting in reduced tumor growth. Taken together, we identified Gα13-dependent NF-κB activation as a new pathway underlying the transcriptional regulation of VEGFR-2 during retinal and tumor angiogenesis.
Polyunsaturated fatty acids (PUFAs) play essential roles in mediating inflammation and its resolution. PUFA metabolites generated by the cytochrome P450 (CYP) - soluble epoxide hydrolase (sEH) axis are known to regulate macrophage activation/polarization but little is known about their role in the resolution of inflammation. Monocytes were isolated from murine bone marrow or human peripheral blood and differentiated to naïve macrophages (M0). Thereafter cells were polarized using LPS and IFNγ (M1), IL-4 (M2a), or TGFβ1 (M2c). Gene expression was analyzed by RNA sequencing, RT-qPCR and Western blotting. Phagocytosis of zymosan and oxo-LDL were also assessed in vitro. Zymosan-induced peritonitis combined with immune cell profiling was used to evaluate the resolution of inflammation in vivo. The expression of sEH was comparable in M0, M1 and M2a macrophages but markedly elevated in M2c polarized cells. The increase in sEH expression elicited by TGFβ relied on the TGFβ receptor ALK5 and the phosphorylation of SMAD2, which was able to bind to the sEH promoter. In macrophages lacking sEH, M2c polarization was incomplete and characterized by lower levels of pro-resolving phagocytosis associated receptors (Tlr2 and Mrc1), as well as higher levels of the pro-inflammatory markers; Nlrp3, IL-1β and TNFα. Fitting with the failure to upregulate phagocytosis associated receptors, the uptake of zymosan and ox-LDL was less efficient in M2c macrophages from sEH-/- mice. The latter animals also demonstrated a retarded resolution of inflammation (zymosan-induced peritonitis) in vivo with fewer resident macrophages and recruited macrophages. PUFA profile analysis indicated decreased sEH substrates e.g., 11, 12-EET, as well as increased sEH products e.g., 11, 12-DHET, indicating an increased sEH activity in M2c macrophages. Taken together, our data indicates that sEH expression is required for the effective M2c polarization of macrophages and thus the resolution of inflammation.