Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- EPR (2)
- PELDOR (2)
- Aptamere (1)
- Conformational Dynamics (1)
- DEER (1)
- DNS (1)
- Electron Paramagnetic Resonance (1)
- Elektronenspinresonanz (1)
- Elektronenspinresonanzspektroskopie (1)
- Multi-domain proteins (1)
Institute
This thesis demonstrates the advancement of PELDOR spectroscopy beyond its original design of distance measurements in order to disentangle a maximum amount of information additionally encoded in the PELDOR data. In particular, the successful synthesis of novel polynitroxide radicals is described as well as the extraction of the relative orientation of spin labels, conformational flexibility and the separation of dipolar and exchange coupling via orientation selective PELDOR measurements in combination with PESIM based simulations. Moreover, the method of PELDOR "Spin Counting" was experimentally validated.
In dieser Arbeit werden Untersuchungen über die Anwendbarkeit von vier Methoden zur selektiven Einführung von Radikalen in DNA vorgestellt. Hierzu wurde die EPR-Spektroskopie (Elektronen-paramagnetische Resonanz) benutzt. Die selektive Einführung und Erzeugung von Radikalen in DNA ist nötig, um J-Kopplungen in DNA zu untersuchen. Vor dem Fernziel der Bestimmung der Austauschkopplungskonstanten J in biradikalischer DNA und deren Korrelation mit der charge-transfer-Geschwindigkeitskonstanten kCT stellen diese Untersuchungen einen wichtigen Ausgangspunkt dar. Stabile aromatische Nitroxide. Simulationen von Raumtemperatur-CW-X-Band-EPRSpektren fünf verschiedener aromatischer Nitroxide, welche potentielle DNA-Interkalatoren sind, wurden durchgeführt. Die aromatischen Nitroxide zeigen aufgelöste Hyperfeinkopplungen, welche zu dem Schluss führen, dass die Spindichte in hohem Maße delokalisiert ist, was die Verwendung dieser Verbindungen zur Messung von J-Kopplungen in biradikalischer DNA erlaubt. Transiente Guanin-Radikale. Transiente Guanin-Radikale werden in DNA selektiv durch die Flash-Quench-Technik erzeugt, bei der optisch anregbare Ruthenium-Interkalatoren verwendet werden. Transiente Thymyl-Radikale aus UV-bestrahltem 4'-Pivaloyl-Thymidin. Es werden photoinduzierte Prozesse untersucht, welche durch Bestrahlung von Thymin-Nukleosiden, die an der 4’-Position die optisch spaltbare Pivaloyl-Gruppe tragen, erzeugt werden. Dieses Nukleosid wurde speziell dafür entworfen, um Elektronenlöcher in DNA zu injizieren. In dieser Arbeit wird gezeigt, dass diese Verbindung benutzt werden kann, um selektiv eine Thymin-Base zu reduzieren. Transiente Thymyl-Radikale erzeugt durch ein neuartig modifiziertes Thymin nach UV-Bestrahlung. Photoinduzierte Prozesse, welche durch Bestrahlung eines ähnlichen Thymidin-Nukleosids erzeugt wurden, werden hier untersucht. Dieses Thymidin- Nukleosid wurde modifiziert, indem die optisch spaltbare Pivaloyl-Gruppe an eine Seitenkette angehängt wurde, welche an der C6-Position der Thymin-Base sitzt. Die Thymin-Base wurde speziell dafür entworfen, um Elektronen in DNA zu injizieren. In dieser Arbeit wurde bestätigt, dass ein Überschuss-Elektron selektiv auf eine Thymin-Base transferiert werden kann.
In the first part of the present work (Chapter 3), EPR spectroscopy at different microwave frequencies, namely at 9 GHz (X-band), 34 GHz (Q-band) and 180 GHz (G-band), was employed to resolve the g-values and the HFCs of a putative radical intermediate involved in the reduction of benzoyl-CoA catalyzed by benzoyl-CoA reductase. In particular, the effect of 33S-labeling on the EPR line shape was studied at X- and Q-band frequencies in order to gain further evidence for a sulfur centered radical proposed to be the electron donor in the reduction or the aromatic ring of BCoA [I]. The spectral components observed at X-, Q- and G-band were overall consistent and showed at least three overlapping EPR signals. The signal postulated to be due to a disulfide radical anion showed no resolved g-values and a relaxation behaviour faster than expected for such a radical species. These observations together with the simulations suggest that the signal could arise from a radical exchange coupled to an [4Fe-4S] cluster located nearby. In the future, pulsed EPR and ENDOR spectroscopy on the 57Fe-labeled enzyme could help to solve this question. The potential of high-field ENDOR in combination with 13C- and 31P-labeling for investigating the structure at the active site in proteins could be verified in the studies of the ligation sphere of the cofactor Mn2+ in Ras as reported in Chapter 4 [2]. Therein, high-field ENDOR performed at 94 GHz (W-band) was used to detect the hyperfine interactions between the electron spin mainly located on the metal ion and the phosphorous nuclei of the bound GDP and GppNHp as well as the carbon nuclei of bound amino acids in the wild-type Ras protein and its oncogenic mutant G12V. These studies aimed at searching for an additional free phosphate ion or amino acid ligand bound to the metal center in the wild type GDP-bound protein with respect to its oncogenic mutant. Rom the 13C- and 31P-ENDOR spectra, the hyperfine couplings of directly bound amino acids and the bound nucleotides were compatible with the hyperfine couplings obtained from DFT calculations based on the crystal structure data. No differences in the 13C- and 31P-ENDOR spectra could be found for the wild-type GDP-bound protein in comparison to its oncogenic mutant in frozen solution. Therefore, no evidence for binding of an additional free phosphate ion or amino acid ligand in the wild-type GDP-bound protein was found. The distances between the detected nuclei and the meta1 ion were in agreement with the ones extracted from crystal structures reported in the literature. Future 35C1-ENDOR studies could clarify whether a chloride ion from the buffer solution could be the ligand replacing one water molecule in the wild type GDP-bound Ras. In Chapter 5, the implementation of a high-field ENDOR setup into a homebuilt pulsed EPR spectrometer operating at 180 GHz is reported and its performance for 1H-ENDOR demonstrated on the model system BDPA. Mims and Davies ENDOR spectra were also obtained for Ras(wt).Mn2+.DP. The increased nuclear Zeeman resolution at 180 GHz may be further exploited in the future by extending the setup for studying hyperfine couplings of low-y nuclei such as 33S, 15N , 17O or 2H. In the present work, the advantages of performing EPR and ENDOR experiments at high fields and frequencies could be nicely demonstrated with the 94 GHz ENDOR studies of Ras. Furthermore, the complementing information obtained at X- and Q-band frequencies in the multifrequency EPR studies on BCR demonstrated that the analysis of EPR spectra can be greatly facilitated by simulating the spectra measured at different MW frequencies with the same set of parameters consistent with a proposed radical. Overall, it could be shown that the use of different experimental techniques at multiple fields and frequencies renders EPR spectroscopy a powerfull tool for structural studies in biological systems.
Pulsed electron-electron double resonance (PELDOR) is a pulsed EPR method that can reliably and precisely provide structural information regarding duplex RNAs and DNAs by measuring long-range distances (1.5-7 nm) utilizing distance-dependent magnetic dipole-dipole interaction between two nitroxide spin labels. In this thesis the application field of PELDOR spectroscopy has been expanded. For the first time the global architecture of tertiary folded RNA has been mapped in vitro. Moreover, the first application of PELDOR for determining structural aspects of RNA and DNA molecules inside cells has been presented. RNA has the central role in cellular processes and gene regulation. It can adopt complex three dimensional structures, which in combination with its conformational dynamics is essential for its function as biological catalyst, structural scaffold and regulator of gene expression. Riboswitches are cis-acting RNA segments that modulate gene expression by direct binding of small molecules with high affinity and specificity. Neomycin-responsive riboswitch is an engineered riboswitch developed by combination of in vitro selection and in vivo screening. Upon insertion into the 5‟ untranslated region of mRNA and binding the cognate ligand it is able to inhibit translational initiation in yeast. Using enzymatic probing the secondary structure had been postulated comprising global stem-loop architecture with a terminal and an internal loop. In the first part of this thesis, the global conformational arrangement of this 27 nucleotides long RNA element has been studied by means of site-directed spin labeling and PELDOR spectroscopy. Spin-labeled neomycin-responsive riboswitch mutants were synthesized via a Sonogashira cross-coupling reaction between 5-membered pyrroline ring based nitroxide radical (TPA) and 5-iodo-uridine. The labeling positions were chosen outside of the binding pocket and UV melting curves revealed that spin-labeling neither disturbs the secondary structure nor interferes with ligand binding. Efficient ligand binding was proven by thermal stabilization of 20.3±3.3 oC upon addition of neomycin, as well as by cw EPR spectra. PELDOR time traces with long observation time windows and with good signal to noise ratio and modulation depth were recorded for all double-labeled samples allowing a reliable data analysis. The fact that there were no shifts in the measured distances upon addition of neomycin implied the existence of a prearranged tertiary structure of the neomycin-sensing riboswitch without a significant global conformational change induced by ligand binding. Measured distances were in very good agreement with the NMR structure of the ligand-bound state of the riboswitch indicating the intrinsic propensity of the global RNA architecture toward its energetically favored ligand-bound form at low temperature. The results harvested in this work represent the first application of PELDOR for mapping the global structure of a tertiary folded RNA. In the second part of this thesis the possibility of applying PELDOR on nucleic acids (NAs) in cellular environment has been investigated. It was shown before that global NA structure depends on matrix conditions, such as concentration of ions and small molecules, molecular crowding, viscosity and interactions with proteins. Therefore, PELDOR spectroscopy on a double-labeled 12-base pair DNA duplex, the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch has been used to obtain long-range distance constraints on such systems in Xenopus laevis oocytes and to compare them with in vitro measurements. The reduced lifetime of nitroxide spin labels under cellular conditions has been a major challenge in these measurements. Investigation of nitroxide reduction kinetics in-cell has revealed that the 5-membered pyrrolidine and pyrroline rings are significantly slower reduced compared to 6-membered piperidine ring based nitroxides. Due to prolonged lifetime of the TPA nitroxides covalently attached to NA molecules PELDOR signals could be measured with good signal-to-noise ratios up to 70 minutes of incubation time. The partial loss of coupled spin labels due to nitroxide reduction only led to a decrease in the modulation depth upon increasing the incubation time. No alterations in the measured distances between in vitro and in-cell experiments implies the existence of stable overall conformations of the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch, whereas the 12-bp duplex DNA experiences stacking in-cell but retaining the secondary structure. Thus, for the first time nanometer distance measurements were performed inside cells, clearly laying a foundation for the application of PELDOR spectroscopy to study biological processes in cells, such as diffusion, interaction with proteins and other factors or chemical reactions.
An application of EPR spectroscopy that is becoming increasingly important is the measurement of distances between electron spins. Several EPR methods have been developed for this purpose, all based on measuring the dipolar coupling between two spins. Due to the specific nature of the sample, we applied dipolar relaxation enhancement measurements to study the geometry of a protein-protein complex. The paramagnetic centers in question had EPR spectra that were too broad and had such short relaxation time that they could not be studied using the more straightforward PELDOR technique. EPR spectral resolution can be increased appreciably by measuring at a frequency higher than conventional X-band (9 GHz) frequency. The spectra of many paramagnetic species can only be resolved at frequencies higher than 90 GHz. For accurate measurement of the orientation of the vector between two dipolar coupled spins with respect to the g-tensors of the spins, high spectral resolution is required. We therefore performed our EPR measurements at G-band (180 GHz) frequency. Dipolar relaxation measurements were applied to study the complex that is formed by the two electron-transfer proteins cytochrome c and cytochrome c oxidase (CcO) from the soil bacterium Paracoccus denitrificans. We were able to detect dipolar relaxation enhancement due to complex formation of soluble subunit II of P.d. CcO (CcOII) with two substrate cytochromes, which was practically absent in a mixture of CcOII with the negative control protein cytochrome c1. This complex formation was characterized by a pronounced temperature dependence that could be simulated using a home-written computer program. The G-band EPR measurements could not be simulated with a single complex geometry. This provided evidence for the hypothesis that electron-transfer protein complexes are short-lived and highly dynamic; they do not seem to form one specific electron-transfer conformation, but rather move around on each other’s binding surfaces and transfer an electron as soon as the distance between donor and acceptor is short enough. As a test of our simulation program, we also applied dipolar relaxation measurements to specially synthesized organic molecules that contained a nitroxide radical and a metal center. The transverse relaxation of Cu2+-OEP-TPA was compared to the relaxation of Ni2+-OEP-TPA at temperatures between 20 and 120 K. In this temperature range, the nitroxide relaxation was enhanced due to the presence of Cu2+, but not by Ni2+. Similarly, relaxation enhancement was found in the nitroxide-Mn2+ pair in Mn2+-terpyridine-TPA with respect to the terpyridine-TPA ligand. Due to the fast T2 relaxation of the nitroxide radical at high temperatures, the measurements were all performed in the low-temperature regime where the T1 relaxation rate of the metal ion was smaller than the dipolar coupling frequency. In this region, no structural information about the molecule can be deduced, since the dipolar relaxation enhancement is only determined by the T1 of the metal ion. The dipolar relaxation measurements we performed at high field indicated a difference in relaxation times between X-band and G-band frequencies. Extensive T1 - measurements of different paramagnetic centers (CuA, Cu2+) confirmed a strong dependence of T1 on magnetic field in the temperature range where the direct process is the dominating T1 relaxation process. This dependence is very strong (factor of 103 with respect to X-band), but does not follow the B04 dependence predicted in literature. The T1 relaxation of low-spin iron in cytochrome c at high magnetic field, estimated from dipolar relaxation data, is also in agreement with a larger contribution by the direct process (factor of 104). Dipolar relaxation enhancement was found to be a technique that is useful for measuring distances between paramagnetic centers, but only for systems where several important conditions are met, such as: the system exists in one certain static geometry, and the relaxation rate of the fast-relaxing spin is faster than the dipolar coupling frequency within the accessible temperature range. Additionally, it is a great advantage for the analysis of dipolar relaxation data if the procedure of dividing the relaxation trace of the dipolar-coupled slow-relaxing spin by the relaxation trace of the slow-relaxing spin in absence of dipolar coupling can be applied. Another useful application of dipolar relaxation enhancement measurements is the measurement of T1 relaxation of extremely fast-relaxing spins, or spins that are otherwise difficult to detect.
Über lange Zeit wurden in der EPR-Spektroskopie hauptsächlich cw-Experimente bei einer Mikrowellenfrequenz von 9 GHz durchgeführt. In den letzten 10 bis 15 Jahren aber haben zwei verschiedene Entwicklungen immer stärkere Verbreitung gefunden. Dies sind zum einen die Verwendung von immer höheren Magnetfeldern und damit Mikrowellenfrequenzen, und zum anderen die Anwendung von Puls-Experimenten. Hochfeld-EPR bietet zwei wesentliche Vorteile gegenüber den klassisch verwendeten Magnetfeldstärken. Dies ist einerseits die erhöhte spektrale Auflösung bei Systemen mit anisotropen g-Tensoren, andererseits die höhere absolute Empfindlichkeit in Verbindung mit einem geringeren Probenvolumen. Puls-Experimente andererseits bieten die Möglichkeit, Informationen zu gewinnen, die mit cw-EPR Spektroskopie nicht oder nur sehr schwer zu erhalten sind. Die Kombination dieser beiden Weiterentwicklungen der EPR-Spektroskopie eröffnet die Möglichkeit, mittels mehrdimensionaler Spektroskopie detaillierte orientierungsabhängige Informationen zu erhalten. Im Rahmen dieser Arbeit wurde ein Puls EPR-Spektrometer aufgebaut, welches bei einer Mikrowellenfrequenz von 180 GHz und einem statischen Magnetfeld von 6,4 T arbeitet. 180 GHz ist derzeit weltweit die höchste Mikrowellenfrequenz, bei der routinemäßig ein zylindrischer Hohlraumresonator verwendet wird und bei der Puls EPR-Experimente durchgeführt werden. Da bei solchen Mikrowellenfrequenzen einige benötigte Bauteile nicht mehr in konventioneller Bauweise erhältlich sind, wurden quasioptische Elemente verwendet, um einen Zirkulator aufzubauen. Der Transport der Mikrowellenstrahlung von der Quelle zur Probe und von dort zurück zur Detektion geschieht mittels überdimensionierter Hohlleiter, um die Verluste zu minimieren. Ein zylindrischer Hohlraumresonator wird in einer fundamentalen Mode betrieben, um am Probenort die für Puls-Experimente notwendige Mikrowellenleistung zu erzeugen. Mit der erreichten Mikrowellenleistung und der Ankopplung des Resonators werden Pulslängen von ca. 60 bis 80 ns für Systeme mit S=1/2 erzielt. Die Eigenschaften des aufgebauten Spektrometers wie die Empfindlichkeit oder die Totzeit im Pulsbetrieb werden ausführlich dargestellt und diskutiert. Ebenso werden die Eigenschaften der implementierten Spektrometersteuerung, insbesondere im Hinblick auf das Zeitverhalten bei Puls-Experimenten, dargestellt und diskutiert. Im letzten Teil der Arbeit wird ein ausführliches Anwendungsbeispiel für Hochefeld-EPR diskutiert. Das Ras-Protein spielt eine wichtige Rolle in der intrazellulären Signalweiterleitung und reguliert solche Prozesse wie Zellwachstum, Differentiation und Apoptose. In ca. 30 % aller menschlicher Tumore werden Mutationen dieses Proteins gefunden, was die wichtige Rolle dieses Proteins demonstriert. Trotz dieser wichtigen Funktion ist der genaue Mechanismus des Aktivierungszykluses noch nicht im Detail aufgeklärt worden. Mittels cw-EPR Spektroskopie wurden die GDP-gebundenen inaktiven Proteinkomplexe verschiedener Mutanten untersucht. Durch Messungen in H217O-angereichertem Wasser konnte gezeigt werden, dass bei Raumtemperatur beim Wildtyp ein Wasserligand weniger am aktiven Zentrum der Proteinkomplexe vorliegt als bei einer onkogenen Mutante. Dieses Ergebnis widerspricht den bisher durch verschiedene Röntgenstrukturuntersuchungen gewonnen Erkenntnissen. Es wird ausführlich darüber diskutiert, dass diese unterschiedlichen Ergebnisse vermutlich auf Kristallbildungseffekte zurückzuführen sind.
One of the most important tasks in chemistry and especially in structural biology has always been the elucidation of three-dimensional molecular structures - either of small molecules or large biopolymers. Among the (bio)physical methods to acquire structural data at atomic resolution electron paramagnetic resonance (EPR) spectroscopy is the most valuable technique for obtaining structural information about many different kinds of paramagnetic species. In biological systems, either paramagnetic metal ions/clusters, transient paramagnetic intermediates in electron transfer processes or artificially attached stable spin labels can be found. The usual approach to interpret EPR spectra is to perform simulations based on the so-called spin Hamiltonian (SH). This means that the well-defined numerical parameters (tensors) in the SH representing different types of interaction are obtained by fitting the experimental data. The SH parameters include electronic g-values, hyperfine coupling (HFC) and quadrupole coupling (&C) constants, zero-field splittings and constants to describe exchange and dipolar interactions between electron spin systems. However, since the SH only contains spin degrees of freedom, a direct translation of the SH EPR parameters into structural information is not straightforward. Therefore, methods to predict such SH interaction parameters starting from molecular structures are required. In this thesis it was investigated whether quantum chemical calculations of EPR parameters based on density functional theory (DFT) methods may be employed to overcome these problems thus enabling a correlation of experimental EPR data with molecular structure. It was the central goal of this work to point out the potential of a fruitful interplay between quantum chemistry and experiment and to study how both can benefit from each other. For this purpose DFT methods were applied to a variety of organic radical or transition metal systems to calculate different EPR parameters. Using the 'broken symmetry' formalism it was possible to compute the exchange coupling constant for a nitroxide biradical and furthermore decompose the exchange mechanism in different through-bond and through-space interactions. Spin density distributions, 14N and 1H HFC constants as well as dipole moments and polarizabilities were computed for a number of aromatic nitroxides to examine their properties and select promising candidates which may serve as DNA-intercalating spin labels. Systematic investigations of the influence of hydrogen bond geometry on the 14N QC parameters for imidazole-water and methylimidazole-benzosemiquinone complexes lead to the conclusion that especially the imidazole amino nitrogen &C parameters are very sensitive probes of the bond geometry, in particular of the hydrogen bond length. The results of this study may be applied to biological systems, e.g. to gain structural information about quinone binding sites. Moreover, quantum chemical methods were applied to elucidate the structure of a nitrogen-centered radical intermediate in the inhibition process of ribonucleotide reductase (RNR). It was possible to find a molecular structure in accordance with all experimentally available data, thus revealing the longsought structure of the No radical and providing evidence for the trapping of a 3'-ketonucleotide in the reduction process catalyzed by RNR. To test the capability of modern DFT methods to predict g- and molybdenum HFC tensors for MoV complexes, validation studies were carried out. Comparison of computed EPR parameters of a number of MoV compounds with corresponding experimental values showed that g- and HFC tensors could be predicted in good accuracy, although some systematic errors of the computational methods have to be considered for such heavy 4d1 transition meta1 systems. Furthermore, DFT calculations on a Mn2+ binding site model of the hammerhead ribozyme allowed to conclude that the structure of the binding site as studied by EPR spectroscopy in frozen solution is very likely to be identical to the site found occupied by Mn2+ in crystals. Finally, computational methods were employed to aid in the structural characterization of the Mn2+ binding site in Ras (rat sarcoma protein) by providing accurate starting parameters for spectral simulations and furthermore helping to interpret the experimental data. In conclusion, it was demonstrated in this thesis that the combination of sophisticated experimental and quantum chemical methods represents a powerful approach in the field of EPR spectroscopy and that it may be essential to employ EPR parameter computations to extract the full information content from EPR spectra. Therefore, great potential lies in future applications of DFT methods to the large number of systems where detailed and reliable experimental data is available but where an unequivocal correlation of these data with structural information is still lacking.
One of the central research topics in the field of biophysical chemistry is the structure and function of membrane proteins involved in energy transduction. Both, the aerobic and the anaerobic respiration include electron transfer and proton translocation across the mitochondrial and bacterial membranes. These electron transfer processes lead to changes in oxidation states of cofactors some of which are paramagnetic. Therefore, EPR spectroscopy is the method of choice to obtain electronic and structural information directly related to the function of the respiratory chain proteins. In this work, multifrequency continuous wave (CW) and pulsed EPR spectroscopy has been used to characterize the molybdenum active site of polysulfide reductase (Psr) from the anaerobic bacterium Wolinella succinogenes and the protein-protein complex between cytochrome c oxidase (CcO) and cytochrome c from the aerobic bacterium Paracoccus denitrificans. Molybdenum in Psr-Psr is an enzyme essential for the sulfur respiration of Wolinella succinogenes. Biochemical studies suggested that the active site of this enzyme contains a mononuclear Mo center, which catalyzes the reduction of the substrate polysulfide to sulfide. Until now there is no crystal structure available for Psr. Consequently, current characterizations of this enzyme have to rely on biochemical and spectroscopic investigations. Within the present work, CW and modern pulsed EPR techniques were applied to investigate its catalytically active site. In the first part of this thesis, different redox agents have been used to generate paramagnetic states of Psr. Multifrequency CW-EPR spectroscopy was applied to identify the Mo(V) states. Using simulations of the experimental spectra, three spectroscopically distinct states have been identified based on the Mo hyperfine- and g-tensor values. Comparison of their EPR parameters with those of related enzymes indicated five or six sulfur ligands at the Mo center depending on the state. The state generated by addition of polysulfide is suggested to be the catalytically active form, in which the Mo is coordinated by a sulfur of the polysulfide chain as the sixth ligand. 33S (I = 3/2) labeled polysulfide was prepared to probe the proximity of the polysulfide to the molybdenum center via its hyperfine coupling. 1D-ESEEM and 2D122 HYSCORE spectroscopy was used to detect these hyperfine and quadrupole interactions, which are too small to be observed in conventional CW EPR spectra. To date there has been only one pulsed-EPR study involving a 33S nucleus [Finazzo et.al. 2003]. The reasons are that this nucleus has a high nuclear spin of I = 3/2 and a large nuclear quadrupole moment in addition to the low Larmor frequency. All these make the detection of sulfur and the extraction of structural information demanding. However, analysis of the 2D-data led to a Mo(V) 33S distance in a range of about 2 to 2.5 Å. Mo-S distances found in molybdenum enzymes of the same family are in a range of 1.8 to 2.8 Å suggesting that the 33S is indeed the sixth ligand of the Mo(V) center and demonstrating that polysulfide is the actual substrate for this enzyme. Thus HYSCORE experiments have been proved to be a powerful technique to gain further insight into the active site structures of molybdenum enzymes and the trafficking of substrate atoms during catalysis. Density functional theory (DFT) calculations together with quantitative numerical simulations of the 2D-data will help to obtain more structural details about the molybdenum binding site in Psr. CcO:cytochrome c complex Protein-protein complex formation is an important step in energy conversion biological processes such as respiration and photosynthesis. These protein-protein complexes are involved in long range electron transfer reactions and are known to be of transient nature. Within the bacterial and mitochondrial respiratory electron transport chains such a complex is formed between CcO and cytochrome c. Upon complex formation cytochrome c donates the electrons required for the CcO catalyzed reduction of dioxygen to water. Here, the protein-protein complex formation between CcO and cytochrome c from Paracoccus denitrificans was investigated by pulsed EPR spectroscopy. The idea was to use the relaxation enhancement due to the distance and orientation dependent magnetic dipole-dipole interaction between the paramagnetic centers in the different CcO constructs and cytochromes. Two-pulse electron spin echo experiments were carried out on mixtures of the CuA containing soluble subunit II or the full size CcO with the physiological partner cytochrome c552 or horse heart cytochrome c. Significantly enhanced relaxation of CuA due to specific protein-protein complex formation has been observed in all four cases. In contrast the non-binding cytochrome c1 showed only a very weak relaxation enhancement due to unspecific protein-protein interactions. The echo decays of the slowly relaxing observer spin (CuA of CcO) measured in the absence and presence of the fast relaxing spin (Fe(III) of cytochrome c) permitted the extraction of the pure dipolar relaxation contributions for the different complexes. Measurements at different temperatures proved the dipolar nature of the relaxation enhancement. Furthermore, it was demonstrated experimentally that this approach also works for the full-size CcO, which contains four paramagnetic metal centers, in complex with cytochrome c. Quantitative simulations of the data suggest a broad distribution in distances (2 - 4 nm) and orientations between the CuA and Fe(III) in the complex between CcO and cytochrome c. High-field EPR spectroscopy will be useful to further analyze and prove these complex structures. Within the present work, it has been shown that pulsed relaxation enhancement experiments can be used to investigate the distance and relative orientation between paramagnetic metal centers. Furthermore, it has been demonstrated on a qualitative level, that this method can be used complimentary to other biophysical approaches to study transient electron transfer protein-protein complexes. Finally, within this work it has been proven that this method can be applied also to biological systems where more than two paramagnetic centers are present. This is particularly interesting for supercomplexes between membrane proteins.
The mitochondrial respiratory chain consists of NADH:ubiquinone oxidoreductase (Complex-I), succinate:ubiquinone reductase (Complex-II), ubiquinol:cytochrome c reductase (Complex-III), cytochrome c oxidase (Complex-IV) and cytochrome c as an electron mediator between Complex-III and Complex-IV. Paracoccus denitrificans membranes were used as a model system for the association of the mitochondrial respiratory chain. More than 50 years ago, a model was given for a supercomplex assembly formed by stable associations between these complexes. This model gradually shifted by the model of random diffusion given by Hackenbrock et al. 1986 Different independent approaches were used to further analyze this situation in a native membrane environment, thus avoiding any perturbation caused by detergent solubilization: (a) measuring the distance and orientation of the different complexes by multi-frequency EPR Spectroscopy we started to analyze simple system, the interaction between CuA fragment derived from P. denitrificans and various c type cytochrome by Pulsed X band and G band (180 GHz) EPR. Partner proteins for the CuA (excess negative surface charge) were (i) horse heart cytochrome c which contain a large number of positive charges in heme crevice,(ii) the cytochrome c552 soluble fragment (physiological electron donor and have positive charges), and as a control (iii) the cytochrome c1 soluble fragment (negative surface potential, derived from bc1 complex) The measurements were performed at several magnetic field positions varying temperature between 5 to 30 K. Both the X band and the high-field measurements show the existence of a strong relaxation enhancement of the CuA by the specific binding of the P. denitrificans cytochrome c552 and horse heart cytochrome c. This relaxation enhancement is dependent on temperature and provides information about the distance and relative orientation of the two interacting spins within this protein-protein complex. (b) For quantitative information about lateral diffusion of cytochrome c oxidase in the native membrane Fluorescence Correlation Spectroscopy (FCS) was used. In this experiment, diffusion coefficients for oxidase differ in the case of supercomplex for wild type membrane and for two deletion mutants lacking either Complex-I or Complex-III. (c) The optical absorption spectroscopy at microsecond level resolution was tried for the translational mobility of oxidase in membrane vesicles. Due to the presence of different hemes in the native membrane, carbon monoxide (CO) used as a probe for the experiment. The optimization of the experimental conditions were carried out to get the optimal signal.
Since the early 2000s, nucleic acid aptamers have gained considerable attention of life science communities. This is in particular due to the fact that aptamers are known to function as artificial riboswitches, which presents an efficient way to regulate gene expression. A promising candidate is the tetracycline-binding RNA aptamer (TC-aptamer) since the TC-aptamer is known to function in vivo and exhibits a very high affinity towards its ligand tetracycline (TC) (Kd = 800 pM at 10mM Mg2+). Although a highly resolved crystal structure exists in the ligand bound state, questions related to dynamics cannot be answered with X-ray crystallography. In this work, pulsed electron paramagnetic resonance (EPR) spectroscopy was used to study different biochemical and structural aspects of the TC-aptamer.
On the one hand, pulsed hyperfine spectroscopy was used to study the binding of TC via Mn2+ to the TC-aptamer at lower and thus more physiological divalent metal ion concentrations. In a first step, a protocol for the relatively new pulsed hyperfine technique electron-electron double resonance detected NMR (ELDORdetected NMR or just EDNMR) was developed for Q-band frequencies (34 GHz). After a successful verification of the EDNMR technique at Q-band frequencies on Mn2+ model complexes ([Mn(H2O)6]2+ and Mn-DOTA), two dimensional hyperfine techniques were used to confirm the formation of a ternary RNA-Mn2+- TC complex at physiological divalent metal ion concentrations. Correlation signals between 13C (13C-labeled TC) and 31P (from the RNA backbone) to the same Mn2+ electron spin were detected with 2D-EDNMR and triple hyperfine correlation spectroscopy (THYCOS).
On the other hand, pulsed electron-electron double resonance (PELDOR) spectroscopy on a doubly nitroxide-labeled TC-aptamer was used to investigate the conformational rearrangement upon ligand binding and how the conformational flexibility is affected by different Mg2+ concentrations. The Çm spin label was used as a nitroxide spin probe. Due to its rigidity and low degree of internal flexibility, the Çm spin label yields very narrow distance distributions and pronounced orientation selection (OS). As a consequence, the width of the distance distributions can be used to draw conclusions about the conformational flexibility of the spin-labeled helices. Analysis of the distance distributions showed that at high Mg2+ concentrations, the TC-aptamer is in its folded state, irrespective of the fact if TC is present or absent. Orientation selective PELDOR revealed that the orientation of the spin-labeled helices in frozen solution is the same as in the crystal structure. First Mn2+-nitroxide pulsed electron electron double resonance (PELDOR) measurements on a singly nitroxide-labeled and Mg2+/Mn2+-substituted TCaptamer at different Mn2+ concentrations in the presence and absence of TC gave insight into the affinities of the additional divalent metal ion binding sites of the TC-aptamer.