Refine
Year of publication
Document Type
- Doctoral Thesis (24)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- EPR (2)
- PELDOR (2)
- Aptamere (1)
- Conformational Dynamics (1)
- DEER (1)
- DNS (1)
- Electron Paramagnetic Resonance (1)
- Elektronenspinresonanz (1)
- Elektronenspinresonanzspektroskopie (1)
- Multi-domain proteins (1)
Institute
This thesis demonstrates the advancement of PELDOR spectroscopy beyond its original design of distance measurements in order to disentangle a maximum amount of information additionally encoded in the PELDOR data. In particular, the successful synthesis of novel polynitroxide radicals is described as well as the extraction of the relative orientation of spin labels, conformational flexibility and the separation of dipolar and exchange coupling via orientation selective PELDOR measurements in combination with PESIM based simulations. Moreover, the method of PELDOR "Spin Counting" was experimentally validated.
In dieser Arbeit werden Untersuchungen über die Anwendbarkeit von vier Methoden zur selektiven Einführung von Radikalen in DNA vorgestellt. Hierzu wurde die EPR-Spektroskopie (Elektronen-paramagnetische Resonanz) benutzt. Die selektive Einführung und Erzeugung von Radikalen in DNA ist nötig, um J-Kopplungen in DNA zu untersuchen. Vor dem Fernziel der Bestimmung der Austauschkopplungskonstanten J in biradikalischer DNA und deren Korrelation mit der charge-transfer-Geschwindigkeitskonstanten kCT stellen diese Untersuchungen einen wichtigen Ausgangspunkt dar. Stabile aromatische Nitroxide. Simulationen von Raumtemperatur-CW-X-Band-EPRSpektren fünf verschiedener aromatischer Nitroxide, welche potentielle DNA-Interkalatoren sind, wurden durchgeführt. Die aromatischen Nitroxide zeigen aufgelöste Hyperfeinkopplungen, welche zu dem Schluss führen, dass die Spindichte in hohem Maße delokalisiert ist, was die Verwendung dieser Verbindungen zur Messung von J-Kopplungen in biradikalischer DNA erlaubt. Transiente Guanin-Radikale. Transiente Guanin-Radikale werden in DNA selektiv durch die Flash-Quench-Technik erzeugt, bei der optisch anregbare Ruthenium-Interkalatoren verwendet werden. Transiente Thymyl-Radikale aus UV-bestrahltem 4'-Pivaloyl-Thymidin. Es werden photoinduzierte Prozesse untersucht, welche durch Bestrahlung von Thymin-Nukleosiden, die an der 4’-Position die optisch spaltbare Pivaloyl-Gruppe tragen, erzeugt werden. Dieses Nukleosid wurde speziell dafür entworfen, um Elektronenlöcher in DNA zu injizieren. In dieser Arbeit wird gezeigt, dass diese Verbindung benutzt werden kann, um selektiv eine Thymin-Base zu reduzieren. Transiente Thymyl-Radikale erzeugt durch ein neuartig modifiziertes Thymin nach UV-Bestrahlung. Photoinduzierte Prozesse, welche durch Bestrahlung eines ähnlichen Thymidin-Nukleosids erzeugt wurden, werden hier untersucht. Dieses Thymidin- Nukleosid wurde modifiziert, indem die optisch spaltbare Pivaloyl-Gruppe an eine Seitenkette angehängt wurde, welche an der C6-Position der Thymin-Base sitzt. Die Thymin-Base wurde speziell dafür entworfen, um Elektronen in DNA zu injizieren. In dieser Arbeit wurde bestätigt, dass ein Überschuss-Elektron selektiv auf eine Thymin-Base transferiert werden kann.
In the first part of the present work (Chapter 3), EPR spectroscopy at different microwave frequencies, namely at 9 GHz (X-band), 34 GHz (Q-band) and 180 GHz (G-band), was employed to resolve the g-values and the HFCs of a putative radical intermediate involved in the reduction of benzoyl-CoA catalyzed by benzoyl-CoA reductase. In particular, the effect of 33S-labeling on the EPR line shape was studied at X- and Q-band frequencies in order to gain further evidence for a sulfur centered radical proposed to be the electron donor in the reduction or the aromatic ring of BCoA [I]. The spectral components observed at X-, Q- and G-band were overall consistent and showed at least three overlapping EPR signals. The signal postulated to be due to a disulfide radical anion showed no resolved g-values and a relaxation behaviour faster than expected for such a radical species. These observations together with the simulations suggest that the signal could arise from a radical exchange coupled to an [4Fe-4S] cluster located nearby. In the future, pulsed EPR and ENDOR spectroscopy on the 57Fe-labeled enzyme could help to solve this question. The potential of high-field ENDOR in combination with 13C- and 31P-labeling for investigating the structure at the active site in proteins could be verified in the studies of the ligation sphere of the cofactor Mn2+ in Ras as reported in Chapter 4 [2]. Therein, high-field ENDOR performed at 94 GHz (W-band) was used to detect the hyperfine interactions between the electron spin mainly located on the metal ion and the phosphorous nuclei of the bound GDP and GppNHp as well as the carbon nuclei of bound amino acids in the wild-type Ras protein and its oncogenic mutant G12V. These studies aimed at searching for an additional free phosphate ion or amino acid ligand bound to the metal center in the wild type GDP-bound protein with respect to its oncogenic mutant. Rom the 13C- and 31P-ENDOR spectra, the hyperfine couplings of directly bound amino acids and the bound nucleotides were compatible with the hyperfine couplings obtained from DFT calculations based on the crystal structure data. No differences in the 13C- and 31P-ENDOR spectra could be found for the wild-type GDP-bound protein in comparison to its oncogenic mutant in frozen solution. Therefore, no evidence for binding of an additional free phosphate ion or amino acid ligand in the wild-type GDP-bound protein was found. The distances between the detected nuclei and the meta1 ion were in agreement with the ones extracted from crystal structures reported in the literature. Future 35C1-ENDOR studies could clarify whether a chloride ion from the buffer solution could be the ligand replacing one water molecule in the wild type GDP-bound Ras. In Chapter 5, the implementation of a high-field ENDOR setup into a homebuilt pulsed EPR spectrometer operating at 180 GHz is reported and its performance for 1H-ENDOR demonstrated on the model system BDPA. Mims and Davies ENDOR spectra were also obtained for Ras(wt).Mn2+.DP. The increased nuclear Zeeman resolution at 180 GHz may be further exploited in the future by extending the setup for studying hyperfine couplings of low-y nuclei such as 33S, 15N , 17O or 2H. In the present work, the advantages of performing EPR and ENDOR experiments at high fields and frequencies could be nicely demonstrated with the 94 GHz ENDOR studies of Ras. Furthermore, the complementing information obtained at X- and Q-band frequencies in the multifrequency EPR studies on BCR demonstrated that the analysis of EPR spectra can be greatly facilitated by simulating the spectra measured at different MW frequencies with the same set of parameters consistent with a proposed radical. Overall, it could be shown that the use of different experimental techniques at multiple fields and frequencies renders EPR spectroscopy a powerfull tool for structural studies in biological systems.
Pulsed electron-electron double resonance (PELDOR) is a pulsed EPR method that can reliably and precisely provide structural information regarding duplex RNAs and DNAs by measuring long-range distances (1.5-7 nm) utilizing distance-dependent magnetic dipole-dipole interaction between two nitroxide spin labels. In this thesis the application field of PELDOR spectroscopy has been expanded. For the first time the global architecture of tertiary folded RNA has been mapped in vitro. Moreover, the first application of PELDOR for determining structural aspects of RNA and DNA molecules inside cells has been presented. RNA has the central role in cellular processes and gene regulation. It can adopt complex three dimensional structures, which in combination with its conformational dynamics is essential for its function as biological catalyst, structural scaffold and regulator of gene expression. Riboswitches are cis-acting RNA segments that modulate gene expression by direct binding of small molecules with high affinity and specificity. Neomycin-responsive riboswitch is an engineered riboswitch developed by combination of in vitro selection and in vivo screening. Upon insertion into the 5‟ untranslated region of mRNA and binding the cognate ligand it is able to inhibit translational initiation in yeast. Using enzymatic probing the secondary structure had been postulated comprising global stem-loop architecture with a terminal and an internal loop. In the first part of this thesis, the global conformational arrangement of this 27 nucleotides long RNA element has been studied by means of site-directed spin labeling and PELDOR spectroscopy. Spin-labeled neomycin-responsive riboswitch mutants were synthesized via a Sonogashira cross-coupling reaction between 5-membered pyrroline ring based nitroxide radical (TPA) and 5-iodo-uridine. The labeling positions were chosen outside of the binding pocket and UV melting curves revealed that spin-labeling neither disturbs the secondary structure nor interferes with ligand binding. Efficient ligand binding was proven by thermal stabilization of 20.3±3.3 oC upon addition of neomycin, as well as by cw EPR spectra. PELDOR time traces with long observation time windows and with good signal to noise ratio and modulation depth were recorded for all double-labeled samples allowing a reliable data analysis. The fact that there were no shifts in the measured distances upon addition of neomycin implied the existence of a prearranged tertiary structure of the neomycin-sensing riboswitch without a significant global conformational change induced by ligand binding. Measured distances were in very good agreement with the NMR structure of the ligand-bound state of the riboswitch indicating the intrinsic propensity of the global RNA architecture toward its energetically favored ligand-bound form at low temperature. The results harvested in this work represent the first application of PELDOR for mapping the global structure of a tertiary folded RNA. In the second part of this thesis the possibility of applying PELDOR on nucleic acids (NAs) in cellular environment has been investigated. It was shown before that global NA structure depends on matrix conditions, such as concentration of ions and small molecules, molecular crowding, viscosity and interactions with proteins. Therefore, PELDOR spectroscopy on a double-labeled 12-base pair DNA duplex, the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch has been used to obtain long-range distance constraints on such systems in Xenopus laevis oocytes and to compare them with in vitro measurements. The reduced lifetime of nitroxide spin labels under cellular conditions has been a major challenge in these measurements. Investigation of nitroxide reduction kinetics in-cell has revealed that the 5-membered pyrrolidine and pyrroline rings are significantly slower reduced compared to 6-membered piperidine ring based nitroxides. Due to prolonged lifetime of the TPA nitroxides covalently attached to NA molecules PELDOR signals could be measured with good signal-to-noise ratios up to 70 minutes of incubation time. The partial loss of coupled spin labels due to nitroxide reduction only led to a decrease in the modulation depth upon increasing the incubation time. No alterations in the measured distances between in vitro and in-cell experiments implies the existence of stable overall conformations of the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch, whereas the 12-bp duplex DNA experiences stacking in-cell but retaining the secondary structure. Thus, for the first time nanometer distance measurements were performed inside cells, clearly laying a foundation for the application of PELDOR spectroscopy to study biological processes in cells, such as diffusion, interaction with proteins and other factors or chemical reactions.
Über lange Zeit wurden in der EPR-Spektroskopie hauptsächlich cw-Experimente bei einer Mikrowellenfrequenz von 9 GHz durchgeführt. In den letzten 10 bis 15 Jahren aber haben zwei verschiedene Entwicklungen immer stärkere Verbreitung gefunden. Dies sind zum einen die Verwendung von immer höheren Magnetfeldern und damit Mikrowellenfrequenzen, und zum anderen die Anwendung von Puls-Experimenten. Hochfeld-EPR bietet zwei wesentliche Vorteile gegenüber den klassisch verwendeten Magnetfeldstärken. Dies ist einerseits die erhöhte spektrale Auflösung bei Systemen mit anisotropen g-Tensoren, andererseits die höhere absolute Empfindlichkeit in Verbindung mit einem geringeren Probenvolumen. Puls-Experimente andererseits bieten die Möglichkeit, Informationen zu gewinnen, die mit cw-EPR Spektroskopie nicht oder nur sehr schwer zu erhalten sind. Die Kombination dieser beiden Weiterentwicklungen der EPR-Spektroskopie eröffnet die Möglichkeit, mittels mehrdimensionaler Spektroskopie detaillierte orientierungsabhängige Informationen zu erhalten. Im Rahmen dieser Arbeit wurde ein Puls EPR-Spektrometer aufgebaut, welches bei einer Mikrowellenfrequenz von 180 GHz und einem statischen Magnetfeld von 6,4 T arbeitet. 180 GHz ist derzeit weltweit die höchste Mikrowellenfrequenz, bei der routinemäßig ein zylindrischer Hohlraumresonator verwendet wird und bei der Puls EPR-Experimente durchgeführt werden. Da bei solchen Mikrowellenfrequenzen einige benötigte Bauteile nicht mehr in konventioneller Bauweise erhältlich sind, wurden quasioptische Elemente verwendet, um einen Zirkulator aufzubauen. Der Transport der Mikrowellenstrahlung von der Quelle zur Probe und von dort zurück zur Detektion geschieht mittels überdimensionierter Hohlleiter, um die Verluste zu minimieren. Ein zylindrischer Hohlraumresonator wird in einer fundamentalen Mode betrieben, um am Probenort die für Puls-Experimente notwendige Mikrowellenleistung zu erzeugen. Mit der erreichten Mikrowellenleistung und der Ankopplung des Resonators werden Pulslängen von ca. 60 bis 80 ns für Systeme mit S=1/2 erzielt. Die Eigenschaften des aufgebauten Spektrometers wie die Empfindlichkeit oder die Totzeit im Pulsbetrieb werden ausführlich dargestellt und diskutiert. Ebenso werden die Eigenschaften der implementierten Spektrometersteuerung, insbesondere im Hinblick auf das Zeitverhalten bei Puls-Experimenten, dargestellt und diskutiert. Im letzten Teil der Arbeit wird ein ausführliches Anwendungsbeispiel für Hochefeld-EPR diskutiert. Das Ras-Protein spielt eine wichtige Rolle in der intrazellulären Signalweiterleitung und reguliert solche Prozesse wie Zellwachstum, Differentiation und Apoptose. In ca. 30 % aller menschlicher Tumore werden Mutationen dieses Proteins gefunden, was die wichtige Rolle dieses Proteins demonstriert. Trotz dieser wichtigen Funktion ist der genaue Mechanismus des Aktivierungszykluses noch nicht im Detail aufgeklärt worden. Mittels cw-EPR Spektroskopie wurden die GDP-gebundenen inaktiven Proteinkomplexe verschiedener Mutanten untersucht. Durch Messungen in H217O-angereichertem Wasser konnte gezeigt werden, dass bei Raumtemperatur beim Wildtyp ein Wasserligand weniger am aktiven Zentrum der Proteinkomplexe vorliegt als bei einer onkogenen Mutante. Dieses Ergebnis widerspricht den bisher durch verschiedene Röntgenstrukturuntersuchungen gewonnen Erkenntnissen. Es wird ausführlich darüber diskutiert, dass diese unterschiedlichen Ergebnisse vermutlich auf Kristallbildungseffekte zurückzuführen sind.
Since the early 2000s, nucleic acid aptamers have gained considerable attention of life science communities. This is in particular due to the fact that aptamers are known to function as artificial riboswitches, which presents an efficient way to regulate gene expression. A promising candidate is the tetracycline-binding RNA aptamer (TC-aptamer) since the TC-aptamer is known to function in vivo and exhibits a very high affinity towards its ligand tetracycline (TC) (Kd = 800 pM at 10mM Mg2+). Although a highly resolved crystal structure exists in the ligand bound state, questions related to dynamics cannot be answered with X-ray crystallography. In this work, pulsed electron paramagnetic resonance (EPR) spectroscopy was used to study different biochemical and structural aspects of the TC-aptamer.
On the one hand, pulsed hyperfine spectroscopy was used to study the binding of TC via Mn2+ to the TC-aptamer at lower and thus more physiological divalent metal ion concentrations. In a first step, a protocol for the relatively new pulsed hyperfine technique electron-electron double resonance detected NMR (ELDORdetected NMR or just EDNMR) was developed for Q-band frequencies (34 GHz). After a successful verification of the EDNMR technique at Q-band frequencies on Mn2+ model complexes ([Mn(H2O)6]2+ and Mn-DOTA), two dimensional hyperfine techniques were used to confirm the formation of a ternary RNA-Mn2+- TC complex at physiological divalent metal ion concentrations. Correlation signals between 13C (13C-labeled TC) and 31P (from the RNA backbone) to the same Mn2+ electron spin were detected with 2D-EDNMR and triple hyperfine correlation spectroscopy (THYCOS).
On the other hand, pulsed electron-electron double resonance (PELDOR) spectroscopy on a doubly nitroxide-labeled TC-aptamer was used to investigate the conformational rearrangement upon ligand binding and how the conformational flexibility is affected by different Mg2+ concentrations. The Çm spin label was used as a nitroxide spin probe. Due to its rigidity and low degree of internal flexibility, the Çm spin label yields very narrow distance distributions and pronounced orientation selection (OS). As a consequence, the width of the distance distributions can be used to draw conclusions about the conformational flexibility of the spin-labeled helices. Analysis of the distance distributions showed that at high Mg2+ concentrations, the TC-aptamer is in its folded state, irrespective of the fact if TC is present or absent. Orientation selective PELDOR revealed that the orientation of the spin-labeled helices in frozen solution is the same as in the crystal structure. First Mn2+-nitroxide pulsed electron electron double resonance (PELDOR) measurements on a singly nitroxide-labeled and Mg2+/Mn2+-substituted TCaptamer at different Mn2+ concentrations in the presence and absence of TC gave insight into the affinities of the additional divalent metal ion binding sites of the TC-aptamer.
Ribonukleinsäure (ribonucleic acid, RNA) wirkt bei der Proteinbiosynthese nicht nur als Informationsüberträger, sondern kann auch beispielsweise durch sogenannten Riboschalter (auch Riboswitches) regulatorische Funktionen übernehmen. Riboschalter sind komplett aus RNA aufgebaut und man kann sie sich als molekulare Schalter vorstellen, die die Genexpression kontrollieren. Konzeptionell besteht ein Riboswitch aus zwei Untereinheiten, dem Aptamer und der Expressionsplattform. Das Aptamer bindet, üblicherweise sehr spezifisch, kleine organische Moleküle, aber auch Ionen. Diese Ligandenbindung induziert Änderungen in der Struktur des Riboswitches, welche wiederum die Expressionsplattform beeinflussen. Je nach Riboswitch ermöglicht oder verhindert dies schließlich die Genexpression. Die vorliegende Doktorarbeit beschäftigt sich mit der Entwicklung und Etablierung von Methoden der optischen Spektroskopie zur Aufklärung von RNA-Dynamiken und -Strukturen im Allgemeinen und der Erforschung von Aptamerbindungsmechanismen im Besonderen.
Eine der dazu verwendetet Methoden ist die FTIR-Spektroskopie. Hierfür wurden zunächst kritische Parameter wie verschiedenste Messeinstellungen oder die Probenpräparation ausgiebig an RNA-Modellsträngen getestet. Dabei war es möglich, eine kleine Spektrenbibliothek als internen Standard aufzubauen. Gleichzeitig konnte gezeigt werden, dass kleinere RNA-Oligonukleotide (< ca. 20 Nukleobasen) gut mittels FTIR-Methoden untersucht werden können. Anschließend wurde eine statische Bindungsstudie am adenosin- sowie am guanosinbindenden Aptamer vorgenommen.
Die zweite hier vorgestellte Methode zur Untersuchung von RNA-Molekülen ist die Fluoreszenzspektroskopie. Im Gegensatz zur FTIR-Spektroskopie ist dazu allerdings eine Modifizierung der RNA durch ein Fluoreszenzlabel nötig. Deshalb beschäftigt sich der Hauptteil dieser Doktorarbeit mit der Charakterisierung und der Anwendung des quasi bifunktionellen RNA-Markers (auch RNA-Labels) Çmf. So wurden zunächst die photophysikalischen und photochemischen Eigenschaften des Markers untersucht. Dabei konnte gezeigt werden, dass Çmf sich als lokale Sonde eignet, da es empfindlich auf Änderungen der Mikroumgebung in Lösung reagiert. Durch direkten Vergleich der optischen Eigenschaften von Çmf mit den entsprechenden Eigenschaften des Spinlabels Çm war es möglich, den starken Fluoreszenzlöschungseffekt (sog. quenching) des Çm aufzuklären. So kann davon ausgegangen werden, dass die Fluoreszenz des Çm durch eine sehr schnelle interne Konversion (IC) in einen dunklen Dublettzustand (D1) gelöscht wird.
Im nächsten Schritt wurde Çmf in RNA-Modellstränge eingebaut, um den Einfluss der RNA auf die Photochemie des Markers zu untersuchen. Dabei konnte gezeigt werden, dass sich dessen Fluoreszenzsignal abhängig von den direkten Nachbarbasen sowie abhängig vom Hybridisierungszustand signifikant ändert. Gleichzeitig konnte keine deutliche Veränderung der Stabilität der Modellstränge festgestellt werden. So konnte also nachgewiesen werden, dass sich Çmf sehr gut als lokale Sonde in RNA eignet. Im Speziellen wurde aus den Ergebnissen geschlossen, dass der Fluorophor für Ligandenbindungsstudien herangezogen werden kann.
Deshalb wurde Çmf schließlich an mehreren verschiedenen Stellen in das neomycinbindende Aptamer (N1) eingebaut, um dessen Bindungskinetik zu untersuchen. Mittels Stopped-Flow-Messungen war es möglich, die Bindungsdynamik des Aptamers zu beobachten. Anhand dieser transienten Daten konnte ein Zweischrittbindungsmodell abgeleitet werden. Dabei bindet Neomycin zunächst unspezifisch an das weitgehend vorgeformte Aptamer. Anschließend kommt es durch die Ausbildung von Wasserstoffbrücken zu einer spezifischen Bindung des Liganden am Aptamer.
Im dritten Teil dieser Arbeit geht es ebenfalls um die Entwicklung und Etablierung eines spektroskopischen Werkzeuges. Dabei stehen allerdings Rhodopsine im Mittelpunkt der Aufmerksamkeit. Hierbei handelt es sich um Membrantransportproteine, die nach optischer Anregung einen sehr schnellen Photozyklus mit mehreren Intermediaten durchlaufen. Es ist möglich, diese Intermediate dank transienter Absorptionsmessungen mit sehr guter zeitlicher und spektraler Auflösung zu beobachten. Allerdings besteht der Bedarf, diese Intermediate statisch zu präparieren, um sie näher charakterisieren und mit anderen Methoden, wie z.B. der Festkörper-NMR, vergleichen zu können.
Ein spektroskopisches Werkzeug zum Präparieren von frühen Photointermediaten ist kryogenes Einfangen (sog. Cryotrapping) dieser Intermediate. Im Rahmen dieser Arbeit wurden das Cryotrapping und die anschließende statische UV/vis-Absorptionsspektroskopie der fixierten (getrappten) Zustände optimiert und an einer Reihe von Rhodopsinen (ChR2, GPR) demonstriert.
Gepulste dipolare EPR-Spektroskopie ist eine wertvolle Methode, um Abstände von 1.5 bis 10 nm zwischen zwei Spinmarkern zu messen. Diese Information kann für Strukturbestimmungen hilfreich sein, wo traditionelle Methoden wie Kristallstrukturanalyse und NMR nicht angewendet werden können. Zusätzlich ist es möglich, Änderungen in Konformation und Flexibilität zu verfolgen. Für diese Studien haben sich stabile Nitroxidradikale als Spinmarker etabliert. Diese werden spezifisch durch die site-directed spin labelling Methode (SDSL) kovalent an das zu untersuchende Biomolekül gebunden. In den letzten Jahren wurden weitere Spinmarker für Abstandsbestimmungen mittels EPR-Spektroskopie entwickelt. Besonders interessant sind Triarylmethylradikale (im Folgenden abgekürzt als Trityl) und paramagnetische Metallzentren.
Im Vergleich zu Nitroxidradikalen hat das Tritylradikal einige Vorteile: Eine höhere Stabilität in einer reduzierenden Umgebung wie im Inneren von Zellen, längere Elektronenspin-Relaxationszeiten bei Raumtemperatur und ein schmaleres EPR-Spektrum. Deswegen ist dieses organische Radikal ein alternativer Spinmarker, der besonders gut für die Forschung von Biomolekülen in einer nativen Umgebung unter physiologischen Bedingungen geeignet ist. Auch paramagnetische Metallzentren sind weniger reduktionsempfindlich als Nitroxidradikale. Zusätzlich sind diese Spinmarker interessant in biologischen Fragestellungen. Zum Beispiel besitzen zahlreiche Enzyme paramagnetische Manganzentren als Cofaktoren. Zudem kann Magnesium, ein wesentlicher Cofaktor in Enzymen, Nukleinsäuren und Nukleotid-Bindungsdomänen der G- und Membranproteine, oft durch das paramagnetische Mangan ersetzt werden. Um Abstandsmessungen an Biomolekülen, die nur ein Metallzentrum besitzen, durchzuführen, können zusätzliche Spinmarker in Form eines Nitroxid-, Tritylradikals oder eines anderen paramagnetischen Metallkomplexes mithilfe der SDSL-Methode kovalent gebunden werden.
Nitroxidradikale, Tritylradikale und Metallzentren haben deutlich unterschiedliche EPR-spektroskopische Eigenschaften, welche oft als orthogonale Spinmarker bezeichnet werden. Solche Spinmarker sind nützlich für die Untersuchung von verschiedenen Untereinheiten bei makromolekularen Komplexen. Somit können die intramolekularen Abstände innerhalb einer Untereinheit sowie intermolekularen Abstände zwischen den unterschiedlichen Untereinheiten mit nur einer einzigen Probe bestimmt werden. Zusätzlich können die orthogonalen Marker sehr effektiv genutzt werden, um Metallzentren in Biomolekülen mithilfe der Trilateration-Strategie genau zu lokalisieren.
Die hier vorliegende Doktorarbeit beschäftigt sich mit der Nutzung dieser neuen Spinmarker für Abstandsmessungen. Solche Spinmarker sind noch kaum erforscht, obwohl sie für biologische Anwendungen eine große Rolle spielen könnten.
Das erste Ziel dieser Doktorarbeit war eine Studie über Tritylradikale mithilfe der dipolaren EPR-Spektroskopie. Zu diesem Zweck wurden sowohl double quantum coherence (DQC) und single frequency technique for refocussing dipolar couplings (SIFTER) Experimente als auch Hochfrequenz pulsed electron electron double resonance (PELDOR) Experimente mit einem Trityl-Modellsystem durchgeführt. Dabei wurden die Besonderheiten der unterschiedlichen dipolaren Spektroskopiemethoden mit diesem Spinmarker untersucht, um die Empfindlichkeit und Robustheit für die Abstandsmessungen zu optimieren.
Das zweite Ziel war eine Studie über den Einfluss der Hochspin-Multiplizität des Mangans auf die Abstandsbestimmungen. Für diesen Zweck wurde zuerst ein Modellsystem mit einem orthogonalen Mn2+ Ion und Nitroxidradikal mithilfe der PELDOR-Spektroskopie untersucht. Anschließend wurde ein weiteres Modellsystem mit zwei Mn2+-Ionen untersucht, um PELDOR und relaxation-induced dipolar modulation enhancement (RIDME) Experimente bezüglich ihrer Empfindlichkeit und Robustheit sowie Genauigkeit der Datenanalyse zu optimieren.
Das Trityl-Modellsystem wurde in der Arbeitsgruppe von Prof. Sigurdsson synthetisiert. Die EPR Messungen wurden bei zwei verschiedenen Mikrowellenfrequenzen (34 und 180 GHz) durchgeführt. Es wurde gezeigt, dass die Auswahl der optimalen Methode von den EPR-spektroskopischen Eigenschaften des Systems bei den jeweiligen Mikrowellenfrequenzen abhängig ist. Das EPR-Spektrum des Trityls ist bei 34 GHz so schmal, dass das ganze Spektrum von einem üblichen Mikrowellenpuls angeregt werden kann. In diesem Fall sind die DQC und SIFTER Experimente am besten geeignet. Der mit diesen Methoden bestimmte Abstand von 4.9 nm ist in guter Übereinstimmung mit Werten aus der Literatur. Es wurde festgestellt, dass die SIFTER Messung eine höhere Empfindlichkeit als DQC besitzt, da das Signal-zu-Rausch Verhältnis um den Faktor vier größer ist. Außerdem ist die SIFTER-Methode experimentell weniger anspruchsvoll, da ein deutlich kürzerer Phasenzyklus für die Mikrowellenpulse benötigt wird. ...
Pulsed Electron Paramagnetic Resonance (EPR) spectroscopy is the most powerful tool to investigate structural properties and dynamics of paramagnetic substances. Up to date the electron spin is almost exclusively manipulated by rectangular shaped microwave pulses generated with switches. These pulses are unselective which means they excite outside their nominal bandwidth which is in most cases shallow compared to the overall spectral width of the spin system. Shaped pulses which are widely applied in NMR promise higher bandwidth and selectivity. The use of amplitude and phase modulated pulses was not possible for EPR due to the three orders of magnitude faster timescale compared to NMR. In this work, for the first time, an AWG (arbitrary waveform generator) operating with a 1 ns time resolution and 14 bit amplitude resolution was implemented into a commercial Bruker pulsed EPR spectrometer.
First results were obtained with broadband excitation pulses derived by optimum control theory (OCT). The OCT-pulse used excites transverse magnetization with 98% efficiency over a more than four times larger bandwidth than common rectangular pulse generating the same 1 B field. The benefit of such a pulse was demonstrated for magnitude FT-EPR spectroscopy on organic radicals in liquid phase.
Due to Spectrometer deadtime an FID cannot be observed for most inhomogeneous spin systems. For that reason prefocused pulses have been evaluated for their applicability to EPR spectroscopy. OCT-derived prefocused pulses can be understood as a compact Hahn Echo sequence in one monolithic pulse. Here, two problems have been encountered. 1) The limited bandwidth of the active and passive microwave components in the excitation path as well as microwave resonator cause linear distortions of the pulse shape which results in inferior pulse performance. This could be circumvented by measuring the impulse response function of the whole spin excitation path and including this information in the pulse optimization procedure. 2) Anisotropic hyperfine interaction which was not taken into account during the pulse optimization also caused efficiency losses.
PELDOR spectroscopy is a valuable tool to measure distance distributions between two or more paramagnetic centers in the range from 2-8 nm. It is demonstrated that the S/N ratio of PELDOR experiments can be substantially increased by substituting the rectangular shaped pump pulse by an adiabatic inversion pulse. The damping of the dipolar oscillations introduced by the prolonged pump pulse towards shorter distances could be circumvented by introducing a second time reversed pump pulse.
By substituting the refocused echo of the well-known 4-pulse PELDOR with a CPMG sequence the dipolar evolution time and thus the validity of PELDOR experiments would be increased. To achieve the maximum dipolar evolution time in a CPMG PELDOR for each refocusing pulse one pump pulse has to be applied. This could only be achieved with the new adiabatic inversion pulses since multiple inversions with efficiency close to one are not possible with rectangular pulses. Even with adiabatic pump pulses a reduced efficiency was observed due to hardware limitations thus limiting the sequence to three refocusing pulses. An iterative method was developed to remove the residual dipolar signals attributed to the reduced inversion efficiency.
The new 7-pulse CPMG PELDOR sequence enabled measuring reliable distance distributions between the protomers of the trimeric betaine transporter BetP. With these it could be shown that the asymmetries found for the 2 and 3-dimensional crystal structures are even larger in frozen detergent.
Nuclear Magnetic Resonance ("NMR") is a powerful and versatile technique relying on nuclei that posses a spin. Since its discovery more than 6 decades ago, NMR and related techniques has become a tool with innumerable applications throughout the fields of Physics, Chemistry, Biology and Medicine. Numerous Nobel Prizes have been awarded for work in the field and a multi billion dollar industry has developed on its basis.
One of NMR's major shortcomings is its inherent lack of sensitivity. Because it relies on the Boltzmann populations of spin states with a minuscule Zeeman splitting, this is particularly true for room temperature experiments.
As a result, in an enormous technological effort to enlarge the Zeeman splitting NMR magnets have been moving to higher and higher magnetic fields. However, even for proton spins possessing the largest magnetic moment of all nuclei, the degree of polarization that can be achieved in the strongest spectroscopic magnets available today (~24 T) at room temperature is merely ~ 8*(10 exp (-5)). In other words, this low polarization theoretically allows a sensitivity enhancement of 104 towards full polarization.
Since Magnetic Resonance Imaging ("MRI") is based on the same principle, it shares this problem with NMR. Furthermore, for technical and physiological reasons full body MRI tomographs do not reach the magnetic field strengths of spectroscopic NMR magnets, making this even more of an issue for MRI.
In consequence, MRI is chiefly restricted to detecting protons, while both MRI and NMR detection of 13C (or other low nuclei) under physiological conditions, i.e. low natural abundance of 13C and a low concentration of the respective substance, suffer from long acquisitions times that are necessary to obtain adequate signal to noise ratios ("SNR").
However, this drawb of NMR can be overcome. The enormous potential sensitivity increase of four orders of magnitude can - at least partially - be exploited by several hyperpolarization techniques, creating entirely new applications and fields of research.
These hyperpolarization techniques comprise chemical approaches like Parahydrogen Induced Polarization ("PHIP") or Photochemically Induced Dynamic Nuclear Polarization ("Photo-CIDNP"), as well as physical techniques like optically pumped (noble) gases13, 14 or Dynamic Nuclear Polarization ("DNP"), which will be the focus of this work. A hyperpolarized substance will render a larger signal without being physically or chemically altered in any other way. It is therefore "marked" without any marker, making it an agent free contrast agent for MRI.
DNP is a technique, in which hyperpolarization of nuclear spins is achieved by microwave (\MW") irradiation of unpaired electron spins in radicals, which are coupled to these nuclei, e.g. 1H, 13C or 15N. The electron spin population is perturbed if the microwave irradiation is resonant with the electron spin transition, which affects the polarization of hyperfine-coupled close nuclei. For large microwave power (i.e. saturating the electron spin transition) the orders of magnitude larger thermal electron spin polarization is effectively transferred to these nuclear spins in the sample. For proton spins the maximum polarization gain amounts to 660, whereas for 13C the sensitivity gain can be as large as 2600. In contrast to e.g. PHIP, which is restricted to specific reaction precursors, DNP is not limited to specific nuclei or hyperpolarization target molecules, making it a very versatile technique. DNP has been first proposed by Overhauser in 1953,15 and experimentally observed shortly thereafter in metals16 and liquids,17 both being systems with mobile electrons. In the 1960s and 70s, DNP was used as a spectroscopic tool in liquids, thoroughly mapping the effect in the low field regime. As well, several other transfer mechanisms were discovered, which are active in the solid state with localized electrons, namely the solid effect the cross effect and thermal mixing. The theory for all three of these mechanisms predicts reduced transfer efficiencies at higher magnetic fields. This fact and the lack of high frequency microwave sources to excite electron spins at magnetic field strengths above 1 T, effectively relegated DNP to a position of an interesting scientifi curiosity.
In the early 1990s, DNP came to a renaissance, when DNP was performed at high field in solid state magic angle spinning ("MAS") experiments using high power gyrotron microwave sources. This pioneering work sparked a surge of new developments and applications.
As well, this success triggered attempts to investigate also the potential of DNP in the liquid state at high magnetic fields, e.g. at 3.4 T35{38 and 9.2 T. To date, DNP can be considered one of the "hot topics" in the field of magnetic resonance, bringing about special issue in magnetic resonance journals and DNP sections on magnetic resonance conferences.
This thesis deals with the development of an in-bore liquid state DNP polarizer for MRI applications operating in ow through mode at a magnetic field strength of 1.5 T. Following this introductory chapter, the theoretical background necessary to understand and interpret the experimental results is explained in chapter 2. Subsequently, chapter 3 deals with the issue of performing liquid state DNP at high magnetic fields and its challenges. The chapter comprises a quick overview of the necessary hardware, the experimental findings for various samples and the interpretation of these findings. along with the ramifications for the aim of this work. Chapter 4 deals with the issue of increasing sensitivity and contrast in MRI, in particular by means of DNP. The chapter illustrates the development of our polarizer by presenting the hardware that was developed and demonstrating its performance under various conditions. As well, several alternative approaches are introduced and compared to our approach. Finally, chapter 5 summarizes the findings and gives an outlook on further developments.